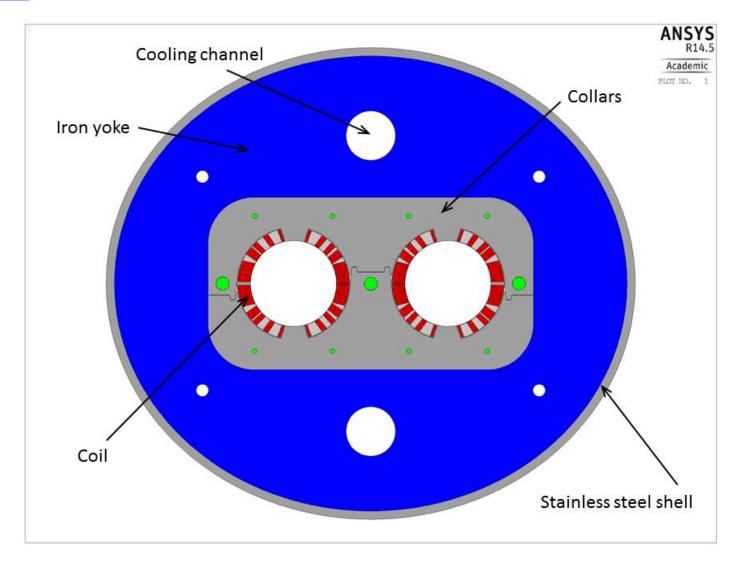


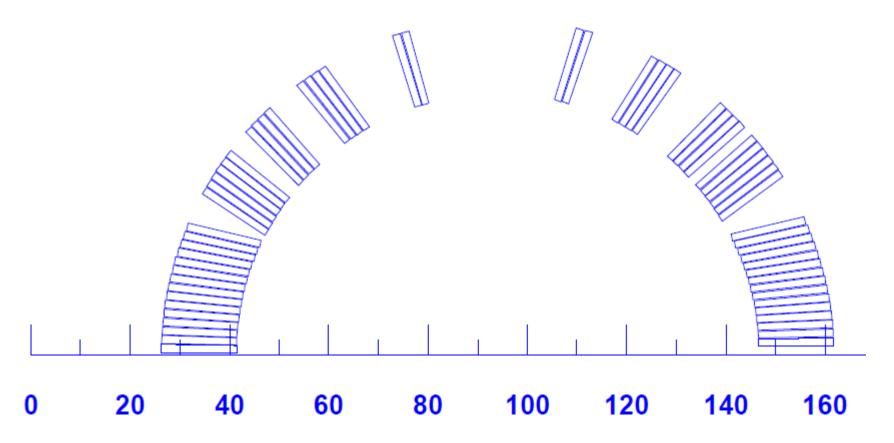
D2 Design, Status, Plan

P.Fabbricatore & S.Farinon
INFN Genova
Presented by E.Todesco (CERN)



- INFN Genova is working on D2 design since January 2014
- Some configurations of D2 were developed, leading step by step to a final lay-out (called INFN_3) with coils composed of 62 turns with no turns asymmetry (31+31).
- The operating current is 12037 A generating a magnetic field of 4.5 T and a margin on the load line of 65%
- A first approach (one collar for both coils) to 2D mechanical analysis was performed. A second one is under way for an option with one collar per coil.
- A first design of coil ends was done.

Configuration INFN_3_3_6 Lay-out



Winding Detail

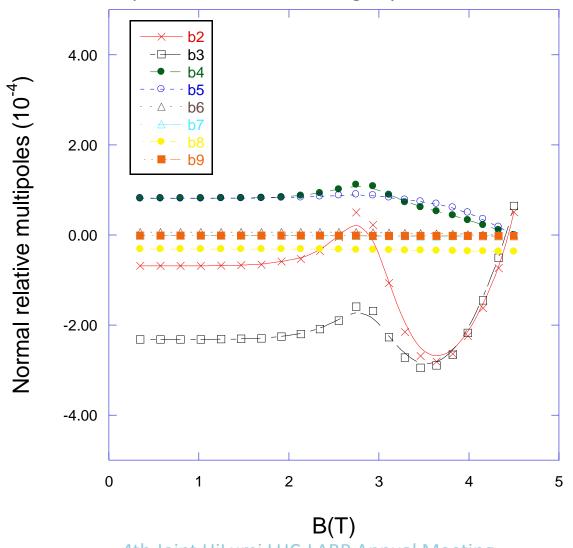
After some iteration with mechanics the coil was optimised with conductor dimensions at 70 MPa

Configuration INFN_3_3_6

Main Characteristics 1

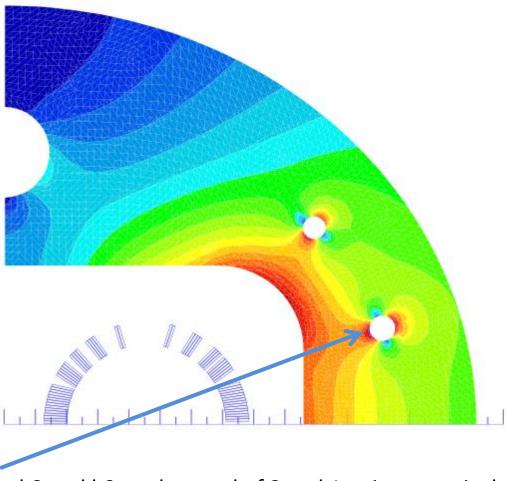
Characteristics	Units	Value				
Aperture	mm	105				
Number of apertures		2				
Distance between apertures (cold/warm)	mm	188.00/ 188.45				
Cold mass outer diameter (min/max)	mm	570/630				
Magnetic length	m	7.78				
Bore field	Т	4.5				
Peak field	Т	5.20				
Current	kA	12.050				
Temperature	K	1.9				
Loadline margin	(%)	35				
Overall current density	A/mm ²	443				
Stored energy per meter	MJ/m	0.2807				
Differential inductance per meter	mH/m	3.509				
Stored energy	MJ	2.18				
Differential inductance	mH	27.3				

Main Characteristics 2


Characteristics	Units	Value			
Superconductor		Nb-Ti			
Strand diameter	mm	0.825			
Cu/No Cu		1.95			
RRR		>150			
Superconductor current density at 10 T, 1.9 K	A/mm²	2100			
Number of strands per cable		36			
Cable bare width	mm	15.1			
Cable bare mid thickness	mm	1.480			
Keystone angle	degrees	0.90			
Insulation thickness per side radial	mm	0.160			
Insulation thickness per side azimuthal	mm	0.145			
Number of layers		1			
Number of turns		31=15+6+4+4+2			
Cable unit length	m	520			
Coil physical length	m	8.2			
Magnet physical length	m	8.5			
Cold mass weigth	t	17			
Heat exchanger hole diameter	mm	40			
Heat exchanger angle	degrees	90			
Heat exchanger distance from centre	mm	237			
Fx (per quarter, per aperture) [left right]	MN/m	0.60/0.68			
Fy (per quarter, per aperture)	MN/m	-0.40			

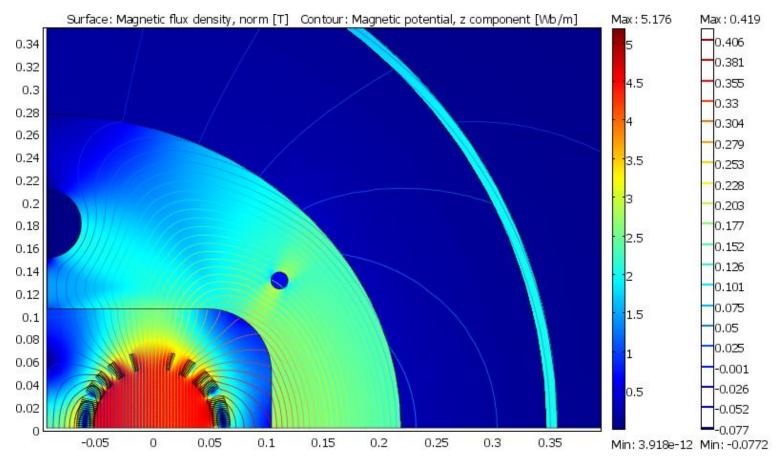
Field quality

b2 and b3 optimised at a B field slightly lower than 4.5 T (4.4 T)

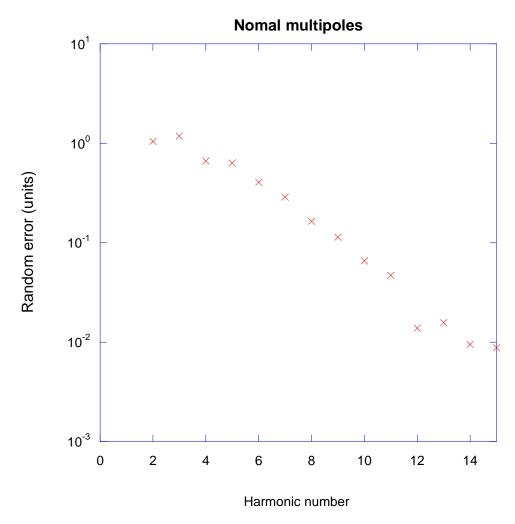


4th Joint HiLumi LHC-LARP Annual Meeting

b2 and b3 fine shim

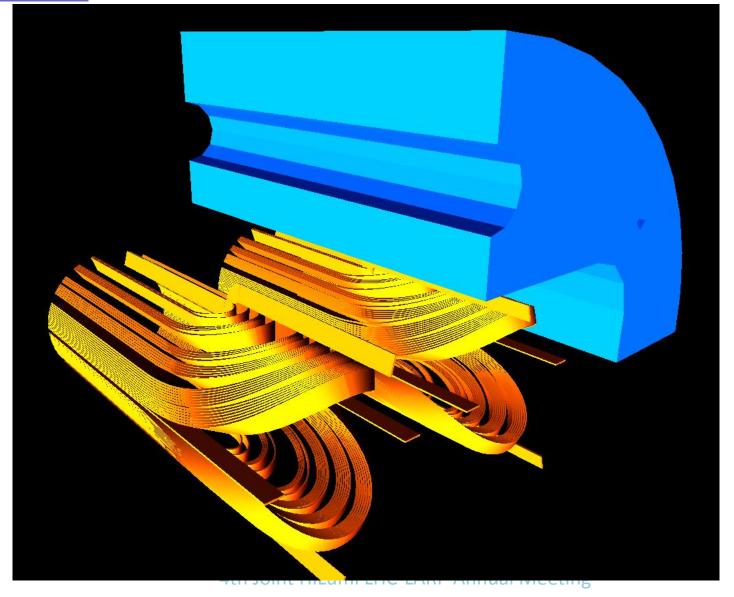


Adding a second hole, b2 and b3 are lowered of 2 and 1 unit respectively. This second hole could be filled with iron if not required



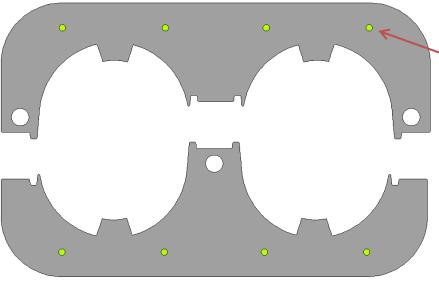
At the external surface of the cryostat (Y=0) B= 100 mT

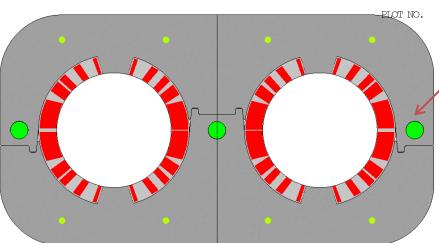
Random errors



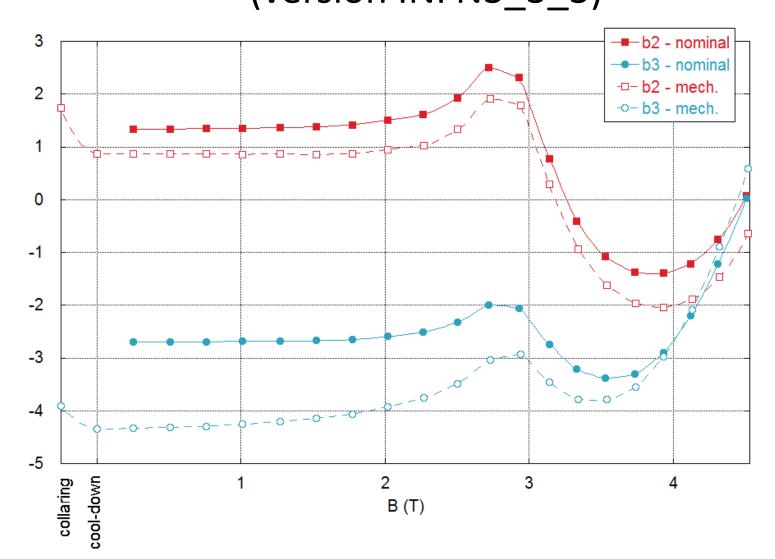
 $40~\mu m$ displacement

Coil end design is progressing





2D Mechanical Design: one collar option (version INFN3_3_3)



- Packs of collars are kept together by pins
- In each pack, the two different kind of collars are alternating
- The packs of collars are assembled by inserting rods
- Collars, pins and rods are made of stainless steel

Mechanical effects effect on b2/b3 harmonics (version INFN3_3_3)

Conceptual Design Planning

Activity within an INFN project called MAGIX

1) 2D magnetic design July2014

2) 3D magnetic design (coil ends) Dec.2014

2) 2D mechanical design including option one collar per coil for INFN3 3 6

collar per coil for INFN3_3_6 Dec. 2014

3) Quench analysis June 2015

4) 3D mechanical design (axial pre-stress) Dec. .2015

5) Enginering design of a short model Dec 2015

6) Engineering Design long Dec 2016

General Schedule

Phase	20	12	20	13	20	14	20	15	20	16	20	17	2018	2019	2020	2021	2022
Conceptual design																	
Engineering design (short)																	
Short model																	
Engineering design (long)																	
Prototype																	
Production																	
Installation																	

Conclusions

- The version INFN3_3_6 has a simplified lay-out with symmetric turn numbers and turns per block (only different angles).
- Magnetic Field 4.5 T
- Small variation of the multipoles due to saturation: b2 (3 units), b3 (3 units) b4 (1.5units), b5 (1 units) and all others close to zero. Possibility to fine shim b2 and b3.
- Coil end design well progressing
- Two options for mechanical design under study