

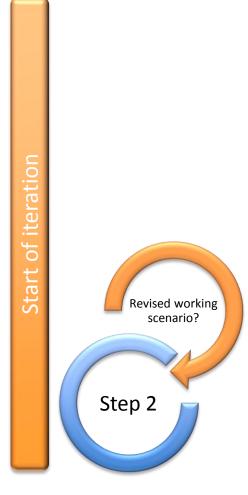
HL-LHC Work and Dose Planning exercises for inner triplet interventions

Cristina Adorisio and Stefan Roesler (CERN - DGS/RP)

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Outline

- Optimization and ALARA principle implementation
- Dose rate outlook in the inner triplet area
 - Operational scenarios
 - Evolution until HiLumi era
- Work and Dose Planning exercises
 - Valve exchange intervention
 - PIM exchange intervention
- Summary and Conclusions



3

OPTIMIZATION DURING DESIGN

Intervention doses

Methodology

Optimization during design

Design options

Material choice

- Low activation properties to reduce residual doses and minimize radioactive waste (optimization with *ActiWiz* code, Web-site: https://actiwiz.web.cern.ch)
- Avoid materials for which no radioactive waste elimination pathway exists (e.g., highly flammable metallic activated waste)
- Radiation resistant

Optimized handling

- Easy access to components that need manual intervention or complex manipulation
- Provisions for fast installation/ maintenance/ repair, in particular, around beam loss areas (*e.g.*, plugin systems, quick-connect flanges, remote survey, remote bake-out)
- Foresee easy dismantling of components

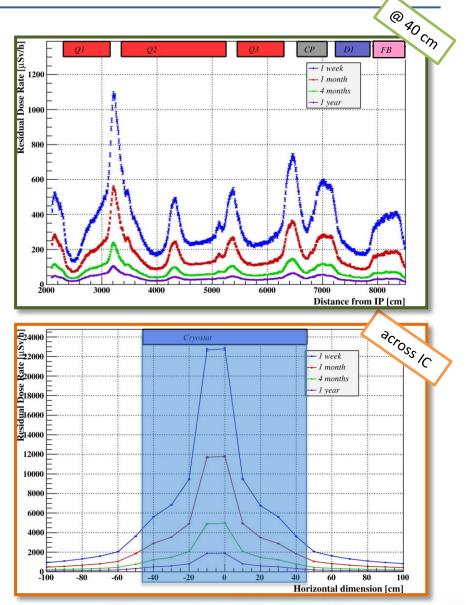
Limitation of installed material

- Install only components that are absolutely necessary, in particular in beam loss areas
- Reduction of radioactive waste

6

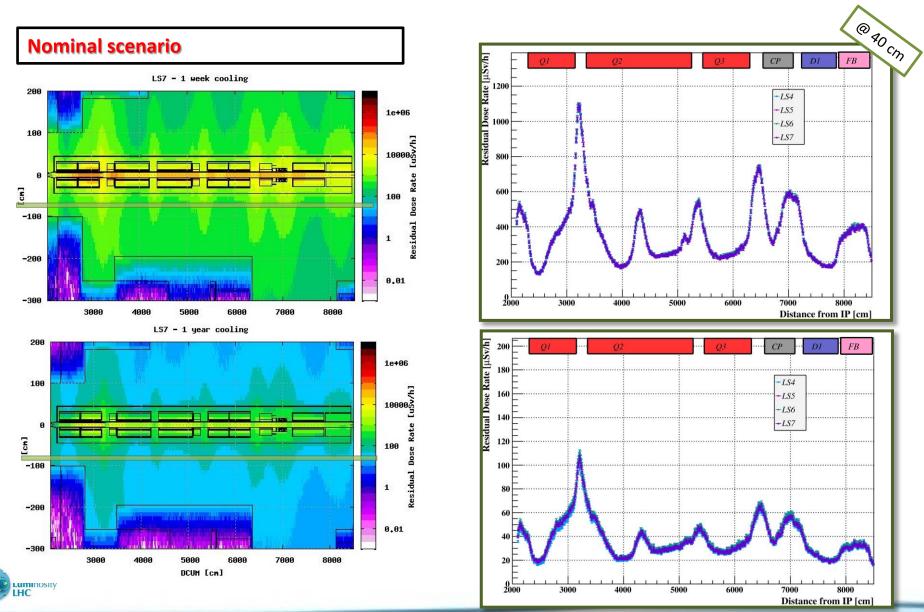
DOSE RATE OUTLOOK

Ambient Dose Equivalent Rates

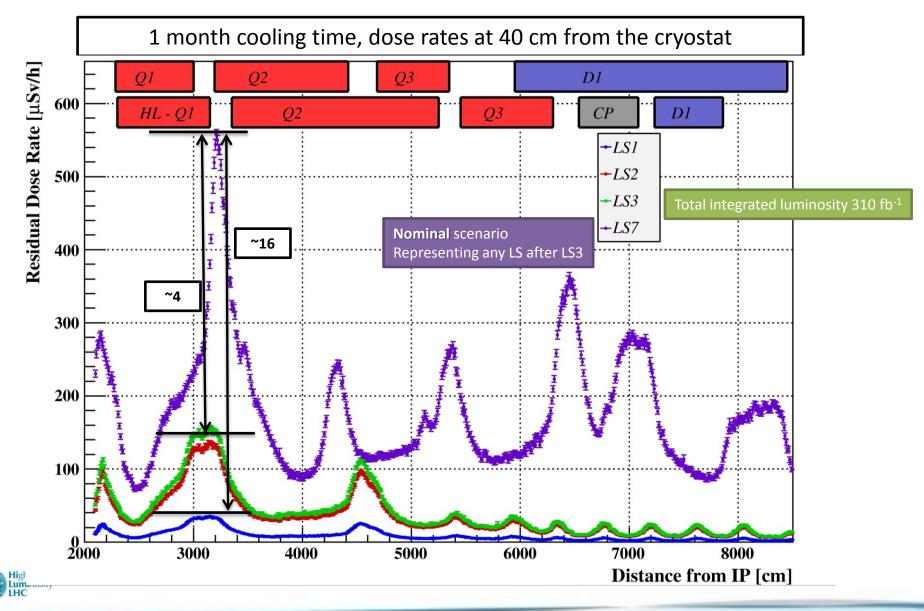

Cooling time dependence

Nominal scenario

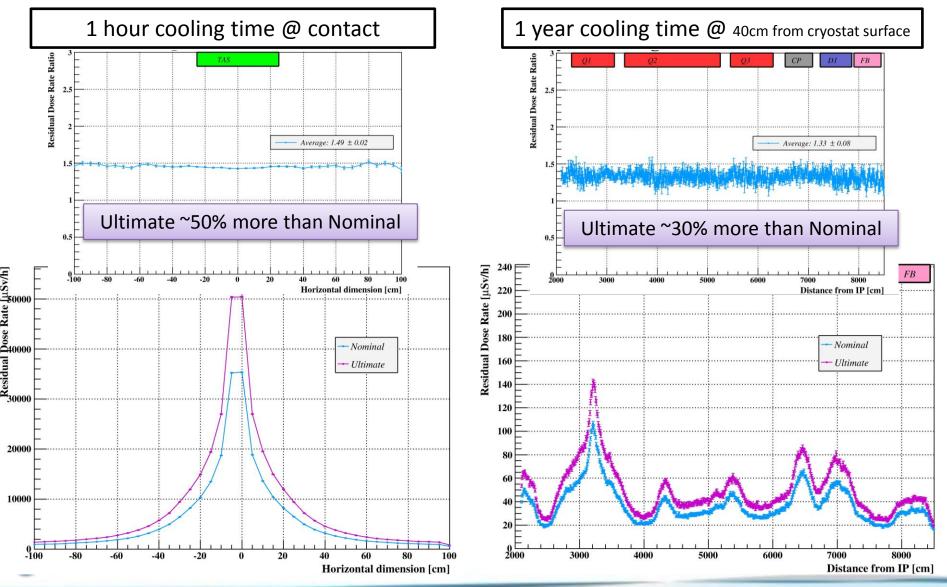
Total integrated luminosity 3060 fb⁻¹


Cooling time	Scaling factor			
1 week	2.0			
1 month	1.0			
4 months	0.4			
1 year	0.2			

Ambient Dose Equivalent Rates


Time evolution

C. Adorisio - 4th Joint HiLumi LHC-LARP Annual Meeting


Ambient Dose Equivalent Rates

Time evolution

Ambient Dose Equivalent Rates

Nominal vs Ultimate

C. Adorisio - 4th Joint HiLumi LHC-LARP Annual Meeting

11

WORK AND DOSE PLANNING EXERCISES

WDP example 1: Valve exchange intervention

WHEN: any LS during HL-LHC (Ultimate scenario)

Intervention description and timing from Cedric Garion

1.0

WHERE: region in between TAS and Q1

		#			distance		dose per action	individual dose	dose per action	individual dose	
	team	person	action description	ion	from the Duration	(man µSv)	(μSv)	(man µSv)	(μSv)		
data			///		beam pipe (minutes) (cm)		1 month co	1 month cooling time		4 months cooling time	
Estimations done using simulation data	т0	2	Valve investigat	tion	40	60	747	747 374		145	
	А	1	Jacket and cab removal	ling	in contact	30	283		103		
	В	2	Pneumatic syst disconnectio		40	10	125		48	427	
	В	2	Flanges disconne	ection	in contact	20	377		138		
	В	2	valve remova	al	in contact	30	566	1162	206		
	В	2	valve re-installa	ition	in contact	30	566	1162	206		
	В	2	Flanges reconne	ction	in contact	30	566		206		
	В	2	Pneumatic syst reconnection		40	10	125		48		
Est	А	1	Jacket and cab installation	•	in contact	45	425	708	155	258	
							Collective dose (man mSv)				
	3 different teams						3.8 1.4			1.4	
								Collective do	se (man mSv)		
	5 V	vorker	sinvolved	Non	ninal scena	rio		20		10	

2.8

Lesson learnt from WDP example 1

- ¹/₂ working day could cost (Ultimate/1 month cooling)
 - ~4 mSv in terms of collective dose
 - ~1.2 mSv individual dose for the most exposed worker
 i.e. 1/5 (1/16) of the annual dose for a Category B (A) worker,
 ~1/2 of the dose design criterion (2 mSv/intervention/year)

More exercises needed in a more refined/realistic description

WDP example 2: PIM exchange intervention (1/2)

• WHEN: any LS during HL-LHC (Ultimate scenario)

Intervention description and timing from Herve Prin

8

• WHERE: inner triplet – **Q1Q2 interconnection** (IC with the <u>highest</u> residual dose rate)

				distance		dose per action	individual dose	dose per action	individual dose
		#	# erson description	from	Duration	(man μSv)	(μSv)	(man µSv)	(μSv)
data	team	person		cryostat (cm)	(minutes)	1 month		4 months	
Ц	Α	1	BLM removal	40	30	351	820	147	343
Estimations done using simulation data	С	3	Open W bellow and thermal screen (includi tie-rods disassembly)	ng 40	180	6325	4217	2643	1762
g s	D	1	Environment protection	n in contact	30	1057	0961	426	3973
sin	D	1	PIM cutting	in contact	240	8452	9861	3405	
й а	Е	1	Inspection	40	20	234	234	98	98
done	F	1	PIM installation and welding	in contact	120	4226	4226	1703	1703
suc	G	1	Welding inspection	40	10	117	117	49	49
matic	D	1	Environment protection removal	n in contact	10	352		142	
Esti	С		Closing W bellow and thermal screen (includi tie-rods assembly)	ng 40	180	6325		2643	
	Α	1	BLM installation	40	40	469		196	
						Collective dose (man mSv)			
	6	differ	ent teams			2	8	11	
	8 י	worke	rs involved						
	Nominal scenario					Collective dose (man mSv)			
High INC			Nonitial SC		2	1	8		

21

WDP example 2: PIM exchange intervention (2/2)

• WHEN: any LS during HL-LHC (Ultimate scenario)

Intervention description and timing from Herve Prin

• WHERE: inner triplet – **Q2Q3 interconnection** (IC with the lowest residual dose rate)

	team	#	action description	distance from cryostat	Duration	dose per action (man μSv)	individual dose (μSv)	dose per action (μSv)	individual dose (man μSv)
data	person		(cm)	(minutes)	1 month cooling time		4 months c	ooling time	
рц	Α	1	BLM removal	40	30	153	357	59	138
simulation	С	3	Open W bellow and thermal screen (including tie-rods disassembly)	40	180	2755	1837	1068	712
Sii	D	1	Environment protection	in contact	30	434	4049	163	1525
using	D	1	PIM cutting	in contact	240	3470		1307	
nsı	E	1	Inspection	40	20	102	102	40	40
ы	F	1	PIM installation and welding	in contact	120	1735	1735	654	654
Estimations done	G	1	Welding inspection	40	10	51	51	20	20
	D		Environment protection removal	in contact	10	145		54	
	С	3	Closing W bellow and thermal screen (including tie-rods assembly)	40	180	2755		1068	
	Α	1	BLM installation	40	40	204		79	
	C	diffor	opt tooms		Collective dose (man mSv)				
	6 different teams					1	2		5
8 workers involved									

Nominal scenario

Collective dose (man mSv)

Survey HLS and WPS removal and installation and magnet realignment NOT TAKEN into account in this estimation.

C. Adorisio - 4th Joint HiLumi LHC-LARP Annual Meeting

9

Lesson learnt from the WDP example 2

- Survey HLS and WPS removal/re-installation and magnet realignment have not been taken into account
- 2 working days could cost (at worst IC / Ultimate / 4 months cooling)
 - ~11 mSv in terms of collective dose
 - ~4 mSv individual dose for the most exposed worker
 - \rightarrow do not match the design criterion of 2 mSv/intervention/year

Individual dose (mSv) – intervention at worst IC (Q1Q2)						
Cooling time	1 month	4 months	1 year			
Nominal scenario	7.3	2.9	1.3			
Ultimate scenario	9.9	4.0	1.7			

- → estimated individual dose (4 months cooling time) exceeds the design criterion by 50% (nominal) or a factor two (ultimate)
- The results of this estimation exercise show that the intervention cannot be done accordingly to the present working description (coming from actual experience) and the necessity of revising the working scenario in order to optimize the dosed to personnel

Summary and Conclusions

- 4 months VS 1 month cooling time: a factor 2.5 less
- Nominal VS Ultimate: a factor 1.35 less
- The estimation is done using residual dose rate maps from simulation study based on nominal and ultimate operational parameters and on the last available geometry
- Doing more exercises in this phase of the project is important for the optimization of the design of the component and for the optimization of the future working scenario
- Estimation of WDP can also be done for LS3 and the removal of the present inner triplet magnets to optimize the work-methods

18

THANK YOU FOR YOUR ATTENTION!