

$4^{\text {th }}$ Joint HiLumi LHC-LARP Annual Meeting November 17-21, 2014 KEK
 High Luminosity LHC
 HL-LHC SC Link Pt1-Pt5
 Layout and integration

Integration studies by C. Collazos, J.P. Corso, C. Magnier.

Speaker Y. Muttoni EN-MEF-INT

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Summary

- IR 1-5 machine layout
-HL-LHC baseline
- Point 1
- Point 5
-HL-LHC option
- Point 1
- Point 5
-Conclusions

IR1 and IR5 according to approved plan LHCLSXHT0010 index A conforming to optics version HL-LHC V 1.1

New version next spring

LAYOUT STATUS IN THE IR 1,5

IR1-IR5 Q3 \rightarrow BBLR

IR1-IR5 Q5 \rightarrow DFBA

Point 1 CERN Domain Situation

Point 5 CERN Domain Situation

HL-LHC IR 1,5 MAIN SYSTEM DISTRIBUTION, BASELINE

Baseline underground I:

- Cavern for Cryogenics only
- Creating a new shaft
- Connection to machine tunnel:

LHC machine side (not showed)

- Floor of the cryo cavern same level of machine tunnel

Point 1

Preliminary study

SD "cryo" + pit 400 m 2

Routing SC link

Point 1

Baseline surface II: all other equipment Point 1

Baseline underground I: cryogenics
 Point 5

- Cavern for Cryogenics only
- Creating a new shaft
- Connection to machine tunnel: LHC machine side
- Floor of the cryo cavern same

Baseline surface II:

all other equipment Point 5

Routing SC link

Point 5

- 2 SC link for each side
- 4 vertical SC link in the shaft
- Implantation DFHA, cold powering, extraction energy should be defined.
- Routing sc link DFHA/DFA should be defined.

LHC

HL-LHC IR 1,5 MAIN SYSTEM DISTRIBUTION OPTION

Space requirements option

Option: underground Point 1

Study not yet started

Option surface:
all other equipment

Point 1

Study not yet started

Option: underground

Point 5

2 SC link for each side

should be defined.

all other equipment

MACHINE SIDE, WITH NEW SHAFT + PC

7) SD (Steel)

- Dimension: $20 \times 30=600 \mathrm{~m} 2$
- $\operatorname{Hmax}=12.0 \mathrm{~m}$
- Services (in;out): HV, water, SC Links; ?
- Crane not costed (20t?)

8) WARM COMPRESSOR (Conc)

- Dimension: $15 \times 40=600 \mathrm{~m} 2$
- $\operatorname{Hmax}=9 \mathrm{~m}$
- Services (in;out): HV, water, Cryo pipes; ?
- $20 t$ crane not costed
10)PARKING, ROADS, GALLERIES
- Car Park: 20 places added
- New Road: $180 \mathrm{~m}(\mathrm{~L}), 8 \mathrm{~m}(\mathrm{~W})$
- New Access road: 70m(L), $6.5 \mathrm{~m}(\mathrm{~W})$
- Galleries for services: $110 \mathrm{~m}(\mathrm{~L})$, Cross section $2.0 \mathrm{~m}(\mathrm{~W})$ by $2.5 \mathrm{~m}(\mathrm{H})$
- Landscaping: 6,600m2

Conclusion

- The integration studies are not finished.
- Continue the work in WP15 integration and using the possibilities to install the power converter in underground....

Thanks for your Attention !

LHC

ANNEX

SC LINK POINT 1

Routing link into US15/PM15

The four SC links pass in the shaft PM15. One from right side One from left side.

Equipments in place

Fnuinmentrinnlnn

Baseline underground I:

 cryogenics
Point 1

- Cavern for Cryogenics only
- Creating a new shaft
- Connection to machine tunnel: LHC machine side
- Floor of the cryo cavern same level of machine tunnel

Preliminary study

SPACE REQUIREMENT SYSTEM BY SYSTEM

CRYOGENICS

Cryogenics

Cryogenic system	Where		
Warm compressor	Surface	Area	$700 \mathrm{~m}^{2}$
		Crane	20 t
	Type	Noise insulated	
Surface SD building	Surface	Area	$30 \times 10=300 \mathrm{~m}^{2}$
		Crane	5 t
Cold Compressor	Underground	Volume	$200 \mathrm{~m}^{3}$
		Surface	$0 \mathrm{~m}^{2}$
		Crane	2 t

Remark

The electronics for the magnetic bearings of the cold compressor is radiation sensitive and maximum distance from its control electronics to the compressor is 50 m

COLD POWERING

Cold powering Circuits Q1 to D1

Q1 to D1 (for each IP side)

circuits connected to the DFHX						
C.M.	Circuit/ magnet	$\begin{aligned} & \text { Op. } \\ & \text { current } \\ & {[\mathrm{kA}]} \end{aligned}$	PC current rating $[\mathrm{kA}]$	$\begin{array}{\|c} \mathrm{N} \text { of } \\ \text { circuits } \end{array}$	N. of 19" racks/PC	Total racks/ Circuit type
Q1-Q3	MQXF	17.5	20	1	10	10
	$\begin{array}{\|c\|} \hline \text { trim } \\ \text { MQXF Q3 } \\ \hline \end{array}$	± 2	± 3.2	1	3	3
Q2A-Q2B	MQXF	17.5	20	1	10	10
	$\begin{gathered} \text { trim } \\ \text { MQXF Q2 } \\ \hline \end{gathered}$	± 0.3	± 0.8	1	0.5	0.5
	MCBXB	± 2.5	± 3.2	4	3	12
CP	MCBXA	± 2.5	± 3.2	2	3	6
	MQSXF	0.182	0.2	1	0.5	0.5
	MCTXF	0.17-0.2	0.2	1	0.5	0.5
	MCTSXF	0.17-0.2	0.2	1	0.5	0.5
	MCDXF	0.193	0.2	1	0.5	0.5
	MCDSXF	0.193	0.2	1	0.5	0.5
	MCOXF	0.17-0.2	0.2	1	0.5	0.5
	MCosXF	0.17-0.2	0.2	1	0.5	0.5
	MCSXF	0.17-0.2	0.2	1	0.5	0.5
	MCSSXF	0.17-0.2	0.2	1	0.5	0.5
D1	MBXF	11.8	16	1	9	9

Space needed
circuits connected to the DFHX

Total racks	55
Installation surface $\left[\mathrm{m}^{2}\right]$	40
Access/manipulation surface $\left[\mathrm{m}^{2}\right]$	43
Linear installation extension $[\mathrm{m}]$	35
Height $[\mathrm{m}]$	2.6
Installation volume $\left[\mathrm{m}^{3}\right]$	100
Cooling water flow rate $[1 / \mathrm{min}]$	305

Cold powering Circuits D2 to Q6

D2 to Q6 (for each IP side)

Circuits connected to the DFHM

C.M.	Circuit / magnet	Op. current [kA]	PC current rating [kA]	N. of circuits	$\left\lvert\, \begin{aligned} & \mathrm{N} . \text { of } 19 " \\ & \text { racks } / \mathrm{PC} \end{aligned}\right.$	Total/ circuit type
D2	MBRD	12.4	16	1	9	9
	MCBRD	± 3	± 4	4	4	16
Q4	MQYY	16.1	20	2	10	20
	MCBYY	± 3	± 4	4	4	16
Q5	MCBY	0.088	± 0.12	6	0.25	1.5
	MQY	4.2	8	2	4	8
Q6	MCBC	0.1	± 0.12	2	0.25	0.5
	MQML	5.39	8	2	4	8

Space needed
Circuits connected to the DFHM

Total racks	79
Installation surface $\left[\mathrm{m}^{2}\right]$	56
Access/manipulation surface $\left[\mathrm{m}^{2}\right]$	60
Linear installation extension $[\mathrm{m}]$	50
Height $[\mathrm{m}]$	2.6
Installation volume $\left[\mathrm{m}^{3}\right]$	145
Cooling water flow rate $[1 / \mathrm{min}]$	400

Cold powering arc
Continuous cryostat presently fed from DFBA
(for each IP side)

Circuits connected to the DFHA				
Magnet	PC current rating [kA]	N. of circuits	N. of 19" racks /PC	Total/ circuit type
MQT	± 0.6	2	0.5	1
MQS	± 0.6	2	0.5	1
MQTL	± 0.6	2	0.5	1
MQT	± 0.6	2	0.5	1
MSS	± 0.6	2	0.5	1
MO	± 0.6	4	0.5	2
MQM	6	4	4	16
MQML	6	4	4	16
D11 T trim	± 0.6	2	0.5	1

High

Space needed	
Circuits connected to the DFHA	
Total racks	38
Installation surface $\left[\mathrm{m}^{2}\right]$	27
Access/manipulation surface $\left[\mathrm{m}^{2}\right]$	29
Linear installation extension $[\mathrm{m}]$	25
Height $[\mathrm{m}]$	2.6
Installation volume $\left[\mathrm{m}^{3}\right]$	68
Cooling water flow rate $[1 / \mathrm{min}]$	NA

Space becoming free in RR by DFHM related PC	
Racks removed	34
Installation surface made available	24
Linear installation extension $[\mathrm{m}]$	22

Spare Power Converters

Q1 to D1 (for each IP side)				D2 to Q6 (for each IP side)			
"DFHX"				"DFHM"			
N. spare	PC current rating [kA]	N. Circuit served	N. of 19" racks	N. spare	PC rating [kA]	N. Circuit served	$\begin{aligned} & \text { N. of } \\ & \text { 19" } \\ & \text { racks } \end{aligned}$
				1	20	2	10
1	20	2	10	1	8	4	3
1	16	1	9	1	± 4	4	0.5
1	± 3.2	7	3	1	± 0.12	8	0.5
1	± 0.8	1	0.5				
1	0.4	10	0.5				

Q1 to Q6 (for each IP side)

DFHX + DFHM spares
N. spare

PC current rating [kA] N. Circuit served
N. of 19" racks

1	20	5	10
1	8	4	3
1	± 4	12	0.5
1	0.4	10	0.5
1	± 0.12	8	0.25

Cont. cryostat (for each IP side)

"DFHA"

N. spare	PC current rating [kA]	N. Circuit served	N. of 19ns racks
Total 5 racks			

Q1 to Q6 (for each IP side)

DFHX+ DFHM spares

Installation surface [m^{2}] 10
Access/manipulation surface [m^{2}]12
Linear installation extension [m] 9
Height [m] 2.6
Installation volume [m^{3}] 18
Cooling water flow rate [1/min] 100

DFHX + DFHM spares	
Installation surface [m^{2}]	10
Access/manipulation surface [m^{2}]	12
Linear installation extension [m]	9
Height [m]	2.6
Installation volume [m ${ }^{3}$]	18
Cooling water flow rate [1/min]	100

Quench detection, Q.H. powering

Q1 to D1 (for each IP side)			
circuits connected to the DFHX			
C.M.	Circuit	DQS	O.H.

D2 to Q6 (for each IP side)

Circuits connected to the DFHM

C.M.	Magnet	DQS	Q.H.	Total racks
D2	MBRD	1	1	1
	MCBRD	4	Not def	2
Q4	MQYY	2	1	1.5
	MCBYY	4	Not def	2
Q5	MCBY	6	0	3
	MQY	2	1	1
Q6	MCBC	2	0	1
	MQML	2	1	1

Plus 0.5 rack for each SC link itself

Quench extraction

Quench extraction system main equipment modules

Equipment	Dimensions [m]	remark
Energy extraction switch	$2 \times 2 \times 2[\mathrm{~L} \times \mathrm{W} \times \mathrm{H}]$	Solid state based switches best guess for dimension 20 kA
Dump resistor	$1 \times 1 \times 1[\mathrm{~L} \times \mathrm{W} \times \mathrm{H}]$	Cooled dump resistor with water to coolant heat exchanger. Best guess dimension for 10 MJ

Quench extraction number and volume approximation

Equipment	No of units	Volume best guess on the base of energies and current
Energy extraction switch	5	$2 \times[2 \times 2 \times 2]+3 \times[2 \times 2 \times 1]$
Dump resistor	7	$4 \times[1 \times 1 \times 1]+3 \times[0.5 \times 0.5 \times 0.5]$

Quench extraction $1^{\text {st }}$ guess installation surface and volume		
Equipment	Surface including access $\left[\mathrm{m}^{2}\right]$	Volume $\left[\mathrm{m}^{3}\right]$
Energy extraction switch	42	30
Dump resistor	20	5

Cold Powering volume and surface total needs

Q1 to D1 (for each IP side) including DFHX and DFHM						
	Q1 to D1	D2 to Q6	Spare PC Q1 to Q6	QDS	QEE	total
Installation surface [m²]	52	68	10	18	25	173
Access/manipulation surface [m²]	56	73	12	22	37	200
Linear installation extension $[\mathrm{m}]$	46	61	9	18	14	148
Installation volume [m$]$	120	164	18	50	35	387
Cooling water flow rate $[1 / \mathrm{min}]$	305	400	100	NA	NA	810

DFH (X M A)	
Length [m]	11
Width $[\mathrm{m}]$	0.95
Height [m]	1800
Installation surface $\left[\mathrm{m}^{2}\right]$	11
Access surface $\left[\mathrm{m}^{2}\right]$	13
Installation volume $\left[\mathrm{m}^{3}\right]$	19

Arc including DFHA	
Installation surface $\left[\mathrm{m}^{2}\right]$	37
Access/manipulation surface $\left[\mathrm{m}^{2}\right]$	41
Linear installation extension $[\mathrm{m}]$	35
Installation volume $\left[\mathrm{m}^{3}\right]$	86

Summary per IP

Maximum in surface

	Crab cavities	Cryogenics	Cold Powering	Total
Installation area on surface	$2 \times 172 \mathrm{~m}^{2}+8 \mathrm{~m}^{2}$	$1000 \mathrm{~m}^{2}$	$2 \times 450 \mathrm{~m}^{2}$	$2244 \mathrm{~m}^{2}$
Installation area underground		$150 \mathrm{~m}^{2}$		$150 \mathrm{~m}^{2}$

Maximum in tunnel

	Crab cavities	Cryogenics	Cold Powering	Total
Installation area on surface	$2 \times 65 \mathrm{~m}^{2}$	$1000 \mathrm{~m}^{2}$		$1130 \mathrm{~m}^{2}$
Installation area underground	$2 \times 107 \mathrm{~m}^{2}+8 \mathrm{~m}^{2}$	$150 \mathrm{~m}^{2}$	$2 \times 450 \mathrm{~m}^{2}$	$1280 \mathrm{~m}^{2}$

DFHA in RR

	Crab cavities	Cryogenics	Cold Powering	Total
Installation area on surface	$2 \times 172 \mathrm{~m}^{2}+8 \mathrm{~m}^{2}$	$1000 \mathrm{~m}^{2}$	$2 \times 372 \mathrm{~m}^{2}$	$2096 \mathrm{~m}^{2}$
Installation area underground		$150 \mathrm{~m}^{2}$	$2 \times 88 \mathrm{~m}^{2}(\mathrm{RR})$	$150+176 \mathrm{~m}^{2}$

DFHA + QDS in RR

	Crab cavities	Cryogenics	Cold Powering	Total
Installation area on surface	$2 \times 172 \mathrm{~m}^{2}+8 \mathrm{~m}^{2}$	$1000 \mathrm{~m}^{2}$	$2 \times 332 \mathrm{~m}^{2}$	$2016 \mathrm{~m}^{2}$
Installation area underground		$150 \mathrm{~m}^{2}$	$2 \times 128 \mathrm{~m}^{2}(\mathrm{RR})$	$150+256 \mathrm{~m}^{2}$

Option B2: short service tunnel

Option comparisons

		Option A1 CP: service tunnel RF: service tunnel New pit	Option A2 CP: surface RF: service tunnel New pit	Option B1 CP: surface RF: surface New pit	Option B2 CP: surface RF: surface Extension	Option B1 CP: surface RF: surface New pit	Option B2 CP: surface RF: surface Extension
		SC link to the DFHA				No SC link to the DFHA	
S	Central building CRY	$1000 \mathrm{~m}^{2}$	$\begin{gathered} 1000+900 \mathrm{~m}^{2} \\ \mathbf{1 9 0 0} \mathrm{~m}^{2} \end{gathered}$	$\begin{gathered} 1000+900+8 \mathrm{~m}^{2} \\ 1908 \boldsymbol{m}^{2} \end{gathered}$	$\begin{gathered} 1000+900+8 \mathrm{~m}^{2} \\ 1908 \boldsymbol{m}^{2} \end{gathered}$	$\begin{gathered} 1000+644+8 \mathrm{~m}^{2} \\ \mathbf{1 6 5 2} \boldsymbol{m}^{2} \end{gathered}$	$\begin{gathered} 1000+280+8 \mathrm{~m}^{2} \\ \mathbf{1 2 8 8} \mathrm{~m}^{2} \end{gathered}$
		Cryo	$\begin{aligned} & \text { Cryo + CP } \\ & (\mathrm{X}+\mathrm{M}+\mathrm{A}) \end{aligned}$	$\begin{gathered} \text { Cryo + CP } \\ (\mathrm{X}+\mathrm{M}+\mathrm{A}) \\ + \text { LLRF } \end{gathered}$	$\begin{gathered} \text { Cryo + CP } \\ (\mathrm{X}+\mathrm{M}+\mathrm{A}) \\ \text { + LLRF } \end{gathered}$	$\begin{gathered} \text { Cryo + CP } \\ \text { (X+M) } \\ \text { + LLRF } \end{gathered}$	$\begin{gathered} \text { Cryo }+\mathrm{CP}(\mathrm{X}+\mathrm{M}) \\ + \\ + \text { LLRF } \end{gathered}$
\mathbf{S}	Crab buildings CL and CR			$175 m^{2}+175 m^{2}$	$175 m^{2}+175 m^{2}$	$175 m^{2}+175 m^{2}$	$175 m^{2}+175 m^{2}$
\mathbf{U}	Underground Extension				$150 m^{2}$		$150 m^{2}$
					plus connection to LHC machine		plus connection to LHC machine
\mathbf{U}	RR					$\underline{2 \times 128 \mathrm{~m}^{2}}$	$\underline{2 \times 128 \mathrm{~m}^{2}}$
\mathbf{U}	Service Tunnel	$\begin{gathered} 2 \times(175+ \\ 450)+8+150 \\ \mathrm{~m}^{2} \\ \mathbf{2 \times 6 2 5 + 1 5 0} \mathrm{~m}^{2} \end{gathered}$	$\begin{gathered} 2 \times(175)+8+ \\ 150 \mathrm{~m}^{2} \\ \mathbf{2 \times 1 7 5 + 1 5 0} \mathrm{~m}^{2} \end{gathered}$	$150 m^{2}$		$150 m^{2}$	
		RF+CP+LLRF+ Cbox	$\begin{gathered} \mathrm{RF}+\mathrm{LLRF}+ \\ \quad \text { Cbox } \end{gathered}$	Cbox		Cbox	
\mathbf{U}	Vertical	New PIT	New PIT	New PIT	PM54	New PIT	PM54

Option comparisons

	Option A1 CP: service tunnel RF: service tunnel New pit	Option A2 CP: surface RF: service tunnel New pit	Option B1 CP: surface RF: surface New pit	Option B2 CP: surface RF: surface Extension	Option B1 CP: surface RF: surface New pit	Option B2 CP: surface RF: surface Extension
	SC link to the DFHA				No SC link to the DFHA	
Access Crab	-	-	+	+	+	+
Access PC	-	$+$	+	$+$	$+$	+
Access QDS	-	+	+	+	+	+
Access QEE	-	+	$+$	$+$	$+$	$+$
Radio shielding PC	+	+	++	++	+	+
Radio shielding	+	+	+	+	+	+
Civil work impact on planning	Limited Connection to machine tunnel	Limited Connection to machine tunnel	Limited Crab connection	Important Common pit use	Limited Crab connection	Important Common pit use
Tunnel installation complexity	Very high	High	Mild	Mild	Easiest	Easy
Integration complexity	Difficult Cryo to SC link	Difficult Cryo to SC link	Mild	Mild	Easiest No SC link to DFBA	Easy No SC link to DFBA
Equipment simplification	Very high (only hor. SC link)	None	None	None	4 SC link less probably the most complex to install and integrate no modif. of	4 SC link less probably the most complex to install and integrate no modif. of DFBA

Option comparisons II

	Option A1 CP: service tunnel RF: service tunnel New pit	Option A2 CP: surface RF: service tunnel New pit	Option B1 CP: surface RF: surface New pit	Option B2 CP: surface RF: surface Extension	Option B1 CP: surface RF: surface New pit	Option B2 CP: surface RF: surface Extension
	SC link to the DFHA				No SC link to the DFHA	
Extension of underground civil work	+++	+++	++	+	++	+
Service underground installation	++++	+++	++	++	+	+

