

FIELD QUALITY UPDATE

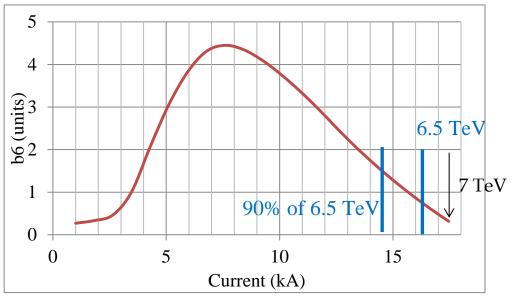
E. Todesco CERN, Geneva Switzerland

Thanks to Susana, Xiarong, Gianluca

CONTENTS

- Triplet
 - Field quality variation with operational current
 - Spread in integrated gradient
 - Non allowed multipoles
- D1
 - Field quality variation with operational current
- D2
 - Field quality variation with operational current

TRIPLET

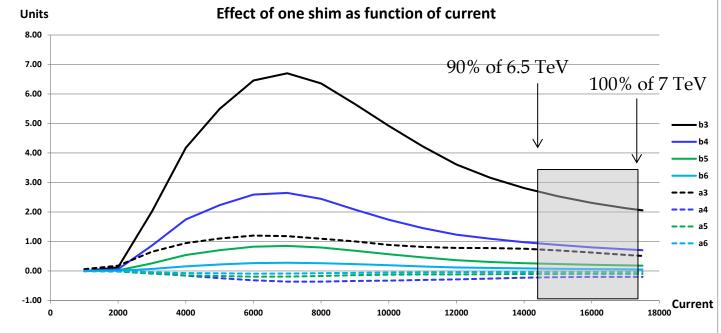

- Spread in the integrated gradient
 - Orders of magnitude of integrated gradient spread (one sigma) in previous productions
 - MQ, MQM: 13 units
 - MQXA/MQXB: less than 10 units
- A variation of 0.1 mm in coil position gives of the order of 10 units difference in integrated gradient
 - So 1 σ = 10 unit this is the best guess we can give today
 - To have 100 units difference (1%) one would need 1 mm, which is a lot
- So I would propose to remove the trim on Q2a from the baseline and keep it in the options

TRIPLET

- Dependence of field quality on operational current
 - All field quality optimized at top field (7 TeV)
 - Going to 6.5 TeV we add a fraction of unit of b6
 - Having 10% less on the top of this (ABP request) would give a 1 systematic unit of b6
 - Optimization at 6.5 TeV instead of 7 TeV being considered

b6 versus current in QXF [S. Izquierdo Bermudez]

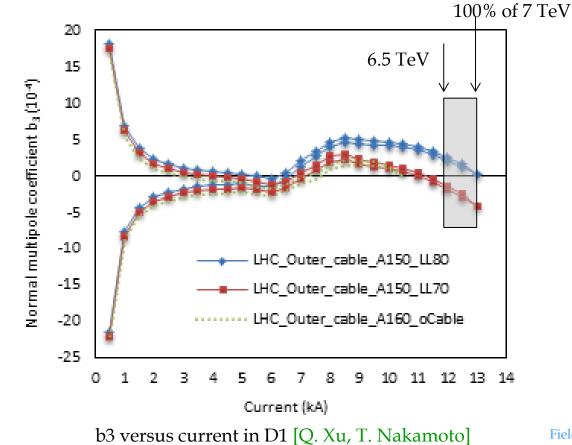
Lay out for HL LHC from IP to D1 - 4


- The most critical paramter is the size of non allowed multipoles (a₃, b₃, a₄, b₄)
 - This parameter is difficult to estimate (you need an homogeneous set of few magnets)
 - First data on HQ shows we are a factor two-three off
 - Similar results on the first MQXC Nb-Ti magnet (so it is not specific to Nb₃Sn technology)
 - Good result considering that we are on a short model, first iteration
 - In case we don't manage to go there, we have a plan B: magnetic shimming

TRIPLET

- Shimming strategy to correct low order non allowed multipoles is effective at 7 TeV
 - Saturation makes the correction nonlinear
 - Also in this case optimizing at 6.5 TeV guarantees effective correction from 90% of 6.5 TeV to 100 % of 7 TeV

Shim effect versus current [P. Hagen]

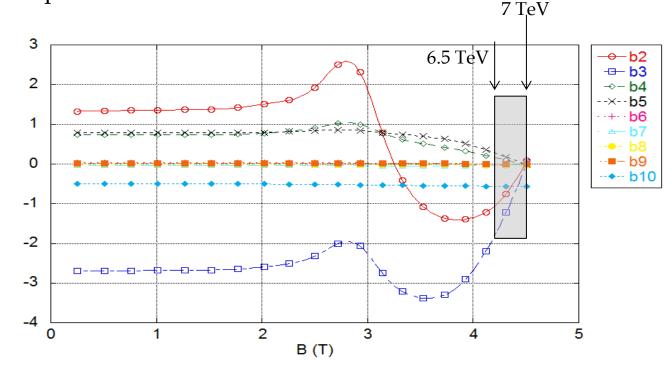


• D1

High

iminosity

- Fine tuning of b₃ presently done at 7 TeV
 - Running at 6.5 TeV will give 2 units of b₃ probably we should optimize at 6.75 TeV



• D2

- Fine tuning of b₃ presently done at 7 TeV
 - Running at 6.5 TeV will give 1 unit of b₂, 2 units of b₃ probably we should optimize at 6.75 TeV

Multipoles versus current in D2 [P. Fabbricatore]

SUMMARY

- Integrated gradient uniformity
 - 10 units estimate proposal to remove the trim on Q2a from the baseline
- Main concern is not allowed multipoles
 - On the way to reach the ambitious target
 - Plan B magnetic shimming
- Optmization of field quality for QXF should be done at 6.5 TeV
 - We can guarantee good field from 90% of 6.5 TeV to 100% of 7 TeV
- Optmization of field quality for D1 and D2 should be done at 6.75 TeV
 - We can guarantee good field from 6.5 TeV to 7 TeV

