Effect of crab cavity/damper noise on emittance evolution in the presence of beam-beam: summary of strongstrong simulations done at CERN/KEK/LBNL

K. Ohmi (KEK), J. Qiang (LBNL), J. Barranco, T. Pieloni(CERN) 4th Joint HiLumi LHC-LARP Annual Meeting 2014 Nov. 17-21, 2014

Thanks to K. Akai, Y. Morita, R. Calaga, R. Tomas

Introduction

- Beam-beam interaction in the presence of noise.
- Collision offset
- Tune
- Beam size

- Noise characteristics
 - Turn-by-turn white noise or time correlated noise in collision offset. Typical model
 - White noise in betatron motion with damping.
 Feedback noise
 - Sinusoidal noise in betatron motion with damping.
 Crab cavity noise

Physics of beam-beam and noise

• Noise of Collision offset

$$\Delta x_n = \left(1 - \frac{1}{\tau}\right) \Delta x_{n-1} + \delta x \hat{r} \qquad \qquad \delta x:$$
$$\Delta x^2 = \langle \Delta x_{n \to \infty}^2 \rangle = \frac{\tau \delta x^2}{2}$$

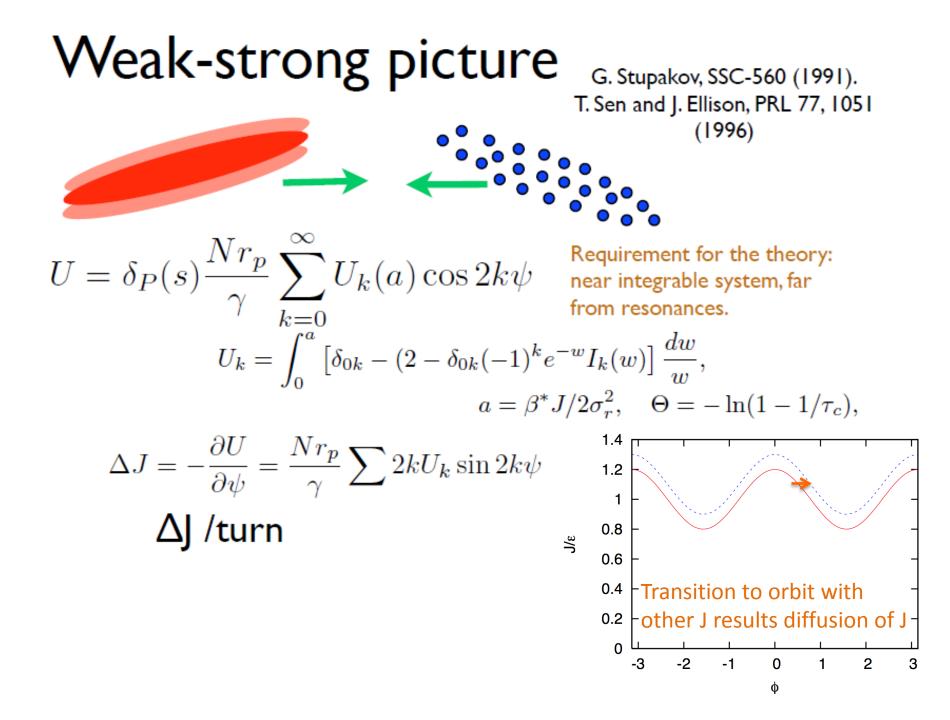
$$\langle \Delta x_{\ell} \Delta x_{\ell+n} \rangle = K(n) = \Delta x^2 e^{-|n|/\tau}$$

 $\langle \Delta x_{\ell} \Delta x_{\ell+n} \rangle = \Delta x^2 \delta_{n0}$ turn by turn noise

 $\Delta x_n = (1 - 1/\tau)(\Delta x_{n-1}\cos 2\pi\nu_x + \Delta p_{x,n-1}\sin 2\pi\nu_x) + \delta x\hat{r}$ $\Delta p_{x,n} = (1 - 1/\tau)(-\Delta x_{n-1}\sin 2\pi\nu_x + \Delta p_{x,n-1}\cos 2\pi\nu_x) + \delta x\hat{r}$ • Noise of collision offset $\tau \delta r^2$

$$\Delta x^2 = \langle \Delta x^2_{n \to \infty} \rangle = \frac{76x}{2}$$

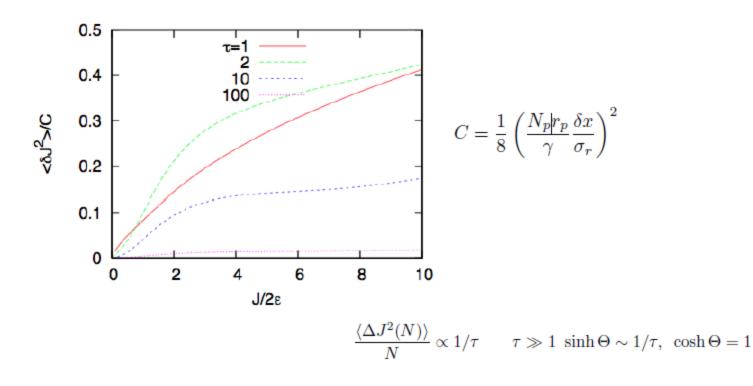
$$\langle \Delta x_{\ell} \Delta x_{\ell+n} \rangle = K(n) = \frac{1}{2} \Delta x^2 \cos 2\pi n \nu e^{-|n|/\pi}$$



Weak-strong picture

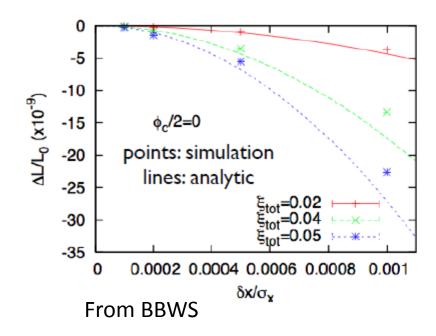
$$\begin{aligned} \frac{\langle \Delta J^2(N) \rangle}{N} &= \left(\frac{N_p r_p}{\gamma} \Delta x\right)^2 \frac{1}{8} \sum_{k=0}^{\infty} \frac{(2k+1)^2 G_k(J)^2 \sinh \Theta}{\cosh \Theta - \cos(2\pi (2k+1)\nu_x)}, \\ &= \left(\frac{N_p r_p}{\gamma} \Delta x\right)^2 \frac{1}{8} \sum_{k=0}^{\infty} (2k+1)^2 G_k(J)^2 \quad \text{for } \mathsf{K}(\mathsf{n}) = \delta_{\mathsf{On}} \end{aligned}$$

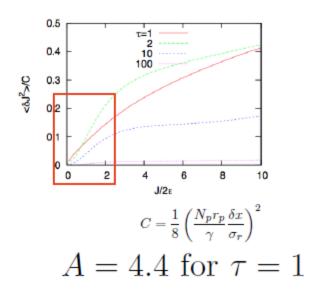
T: correlation time of the noise



Weak-strong picture
For
$$\langle \Delta J^2 \rangle = \frac{1}{8} \left(\frac{N_p r_p}{\gamma} \frac{\Delta x}{\sigma} \right)^2 A \frac{J}{2\varepsilon},$$

 $\frac{\delta \varepsilon}{\varepsilon} = \frac{1}{8} \left(\frac{N_p r_p}{\gamma \varepsilon} \frac{\Delta x}{\sigma} \right)^2 \frac{A}{4} = \left(\pi \xi \frac{\Delta x}{\sigma} \right)^2 \frac{A}{2} = 21.7 \times \left(\xi \frac{\Delta x}{\sigma} \right)^2$





Noise in betatron motion

- Frequency range of feed back is fast.
- White noise in betatron motion with damping

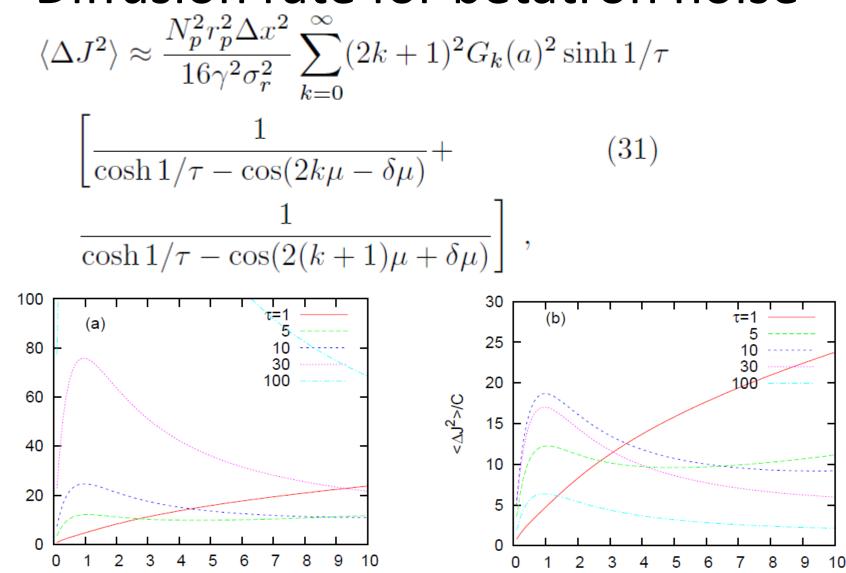
$$\Delta x_n = (1 - 1/\tau)(\Delta x_{n-1}\cos 2\pi\nu_x + \Delta p_{x,n-1}\sin 2\pi\nu_x) + \delta x\hat{r}$$
$$\Delta p_{x,n} = (1 - 1/\tau)(-\Delta x_{n-1}\sin 2\pi\nu_x + \Delta p_{x,n-1}\cos 2\pi\nu_x) + \delta x\hat{r}$$

$$\Delta x^2 = \langle \Delta x_{n \to \infty}^2 \rangle = \frac{\tau \delta x^2}{2}$$
$$\langle \Delta x_{\ell} \Delta x_{\ell+n} \rangle = K(n) = \frac{1}{2} \Delta x^2 \cos 2\pi n \nu e^{-|n|/\tau}$$

Equivalent to

White noise spectrum

$$\ddot{x} + 2\lambda \dot{x} + \omega_{\beta}^{2} x = \int f(\omega) e^{-i\omega t} d\omega \sum_{n=-\infty}^{\infty} \delta(t - nT_{0})$$
$$\lambda = 1/\tau$$



<گا/ک<

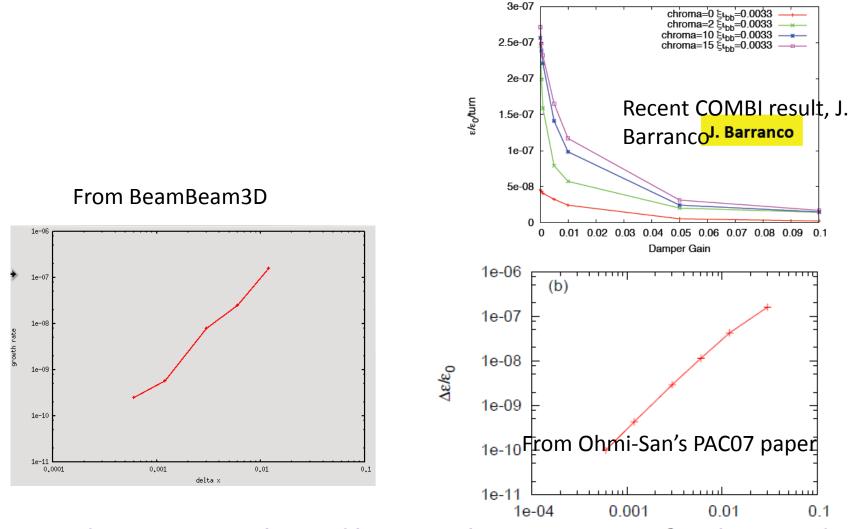
Beam-beam mode

- In weak-strong model, betatron excitation for $\delta\mu\text{=}0$, resonant excitation
- Frequency of beam motion is ambiguous due to beam-beam tune shift. Decoherence is taken into account for $\delta\mu$ =2 $\pi\xi$.
- Diffusion rate $\Delta x < 3\sigma$ is factor 2-3 enhanced for betatron nonlinear for dx.
- We expect the simple formula is useful even betatron noise for Δx (not dx).
- The formula is confirmed by strong-strong simulations.

Strong-strong simulation

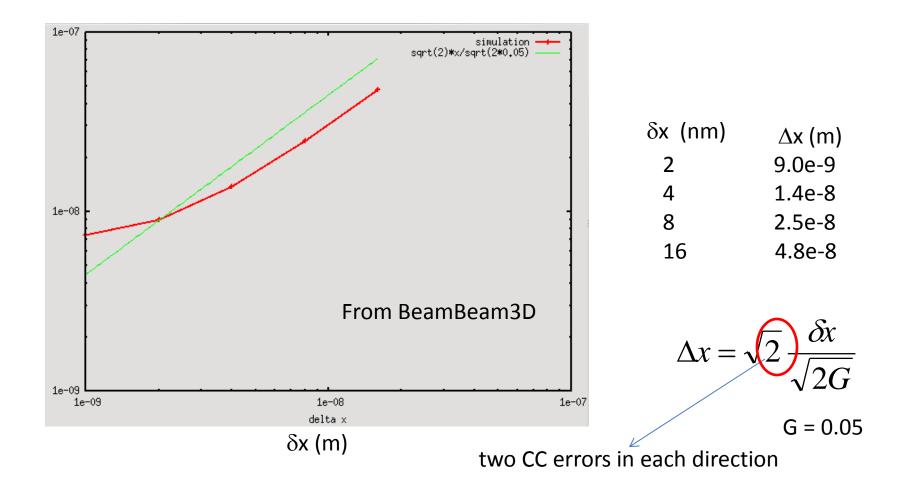
- Beambeam3D (J.Qiang) and BBSS(K.Ohmi)
- Both are Particle in Cell based simulations.
- Solver is Green function method.
- 3D symplectic using z-interpolated potential.

Emittance Growth vs. Normalized Noise Amplitude



Good agreement is obtained between the BeamBeam3D simulation and Ohmi-San's PAC07 paper for the LHC parameters with 1 IP and 1 error.

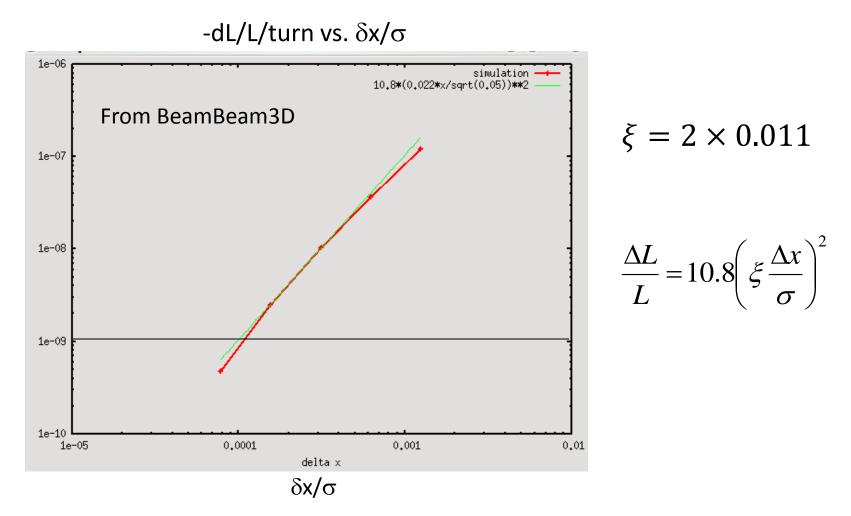
Beam RMS <x> fluctuation vs. Normalized Noise Amplitude



Numerical rms <x> fluctuation is in reasonable agreement with the model

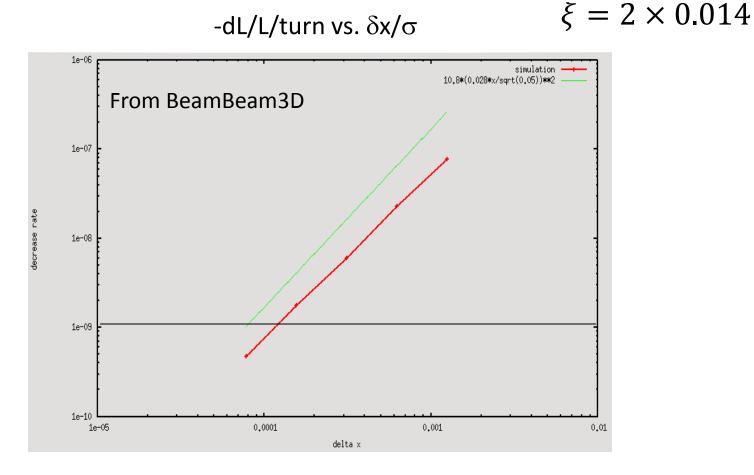
K. Ohmi, "Beam-beam effect s under the influence of external noise," in BeamBeam 2013 workshop.

Luminoisty Decrease from CC Noise with Beta* Leveling



Luminosity decrease rate is in good agreement with the model

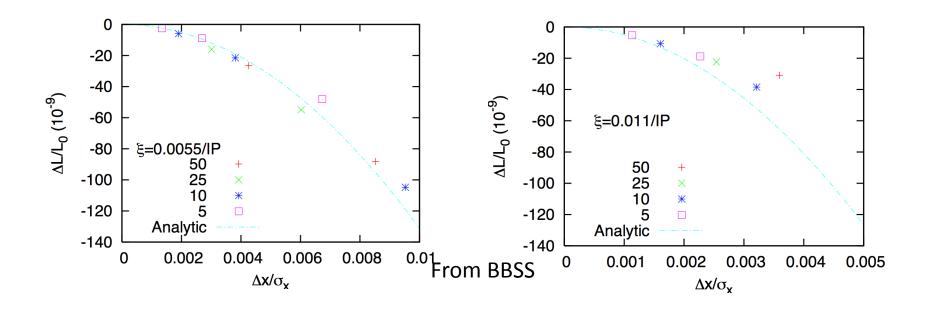
Luminoisty Decrease from CC Noise with Beta* Leveling



 $\delta x/\sigma$

Luminosity decrease rate is in reasonable agreement with the model

• Strong-strong simulation showed luminosity degradation scale to Δx not δx .



Crab cavity noise

- Betatrpn oscillation is induce by crab cavity phase error randomly, or a frequency range.
- Feedback suppresses the betatron oscillation. $\delta x_{crab} = \frac{c \tan \theta_{crab}}{\omega_{crab}} \delta \varphi_{crab}$

 $\Delta x = \sqrt{\frac{N_{crab}\delta x_{crab}^2 + \delta x_{FB}^2}{G}}$

• Δx tolerance for 2IP

$$\frac{\Delta L}{L_0} = 10.8 \left(\xi \frac{\Delta x}{\sigma}\right)^2$$

 θ_{crab} : Crab angle at IP

 Phase error tolerance $\delta\varphi_{crab} = \sqrt{\frac{G}{N_{crab}}} \frac{0.3 \,\omega_{crab}\sigma}{\xi c \tan \theta_{crab}} \sqrt{\frac{\Delta L}{L_0}}$

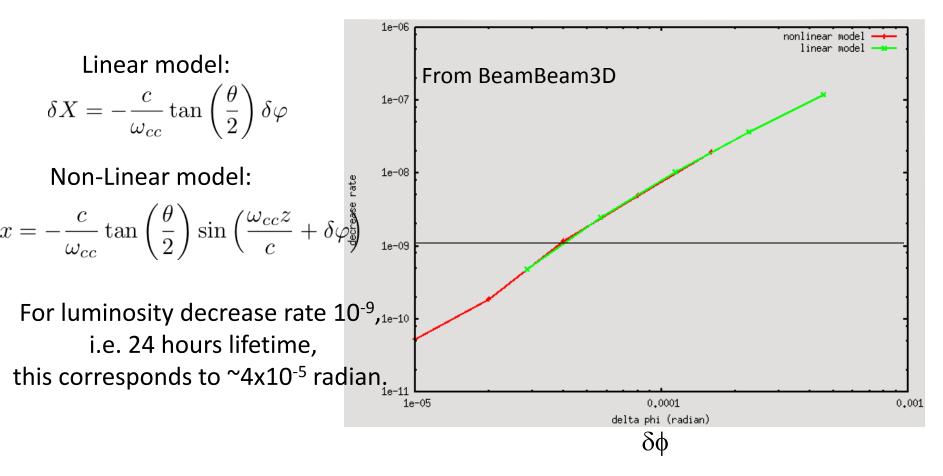
Physical parameters		Physical parameters	
Е	0.335 nm	Е	0.40 nm
pick-up gain	0.05	pick-up gain	0.05
pick-up	720 nm hor.	pick-up	720 nm hor.
noise	500 nm ver.	noise	500 nm ver.
β*	49 cm	β*	102 cm
σ	12.8 um	σ	20.25 um
θ	0.59 mrad	θ	0.59 mrad
ξ	0.022	ξ	0.028
Ν	2.2x10 ¹¹	Ν	3.5x10 ¹¹

Phase noise tolerance

$$\delta\varphi_{crab} = \sqrt{\frac{G}{N_{crab}}} \frac{0.3 \,\omega_{crab}\sigma}{\xi c \tan \theta_{crab}} \sqrt{\frac{\Delta L}{L_0}}$$

- $\Delta L/L=10^{-9}$, N_{crab}=4, f_{crab}=400MHz, G=0.05, θ_{crab} =590mrad/2
- ξ =0.011x2, σ = 13 μ m $\delta \varphi_{crab}$ = 1.8x10⁻⁵ rad
- ξ =0.014x2, σ = 20 μ m $\delta \varphi_{crab}$ = 2.2x10⁻⁵ rad

Luminosity Decrease Rate vs. Phase Noise Amplitude (Linear Model vs. Non-Linear Model)



Both models agree with each other very well!

Beam-Beam Simulation of HL-LHC with 10% Crab Cavity leveling and Crab Cavity White Noise for 25 ns scenario

Physical parameters			
Е	0.335 nm		
pick-up gain	0.05		
pick-up noise	720 nm hor.		
	500 nm ver.		
β*	15 cm		
σ	7.1 um		
θ	0.59 mrad		
ξ	0.022		
N	2.2x10 ¹¹		

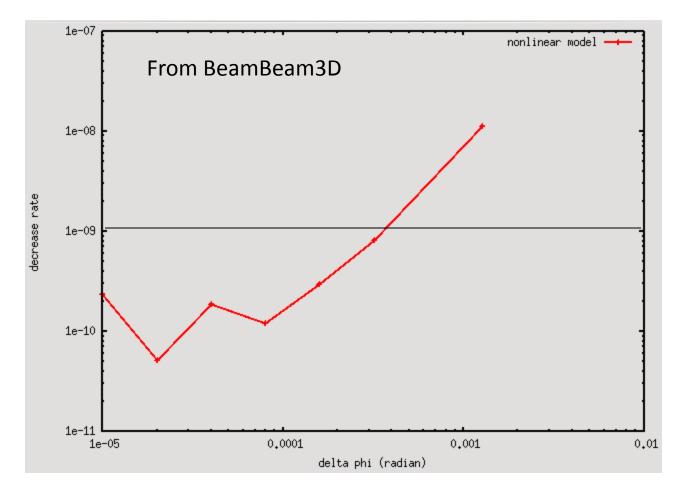
Phase noise tolerance

$$\delta\varphi_{crab} = \sqrt{\frac{G}{N_{crab}}} \frac{0.3 \,\omega_{crab}\sigma}{\xi c \tan \theta_{crab}} \sqrt{\frac{\Delta L}{L_0}}$$

- $\Delta L/L=10^{-9}$, N_{crab}=4, f_{crab}=400MHz, G=0.05, $\theta_{crab}=59mrad/2$
- ξ =0.011x2, σ = 7 μ m $\delta \varphi_{crab}$ = 1x10⁻⁴ rad

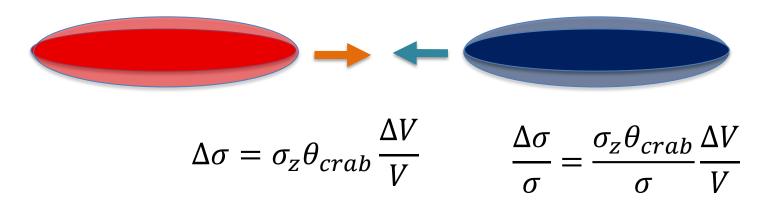
Luminosity Decreasing Rate vs. Phase Noise Amplitude with 10% Crab Cavity Leveling (nonlinear model)

-dL/L/turn vs. $\delta x/\sigma$



Noise in crossing angle

 Equivalent to beam size fluctuation, when disruption parameter is small. Only projected size is important.



Diffusion due to crab voltage

$$U(a, \psi; \sigma + \Delta \sigma) = U(a, \psi; \sigma) + \frac{dU(a, \psi; \sigma)}{d\sigma} \Delta \sigma$$

$$\frac{dU(a, \psi; \sigma)}{d\sigma} = \frac{\partial U(a, \psi)}{\partial a} \frac{da}{d\sigma} + \frac{\partial U(a, \psi)}{\partial \psi} \frac{d\psi}{d\sigma}$$

$$U(a, \psi) = \sum_{\substack{k=-\infty \\ k=-\infty}} U_k(a) \cos 2k\psi$$

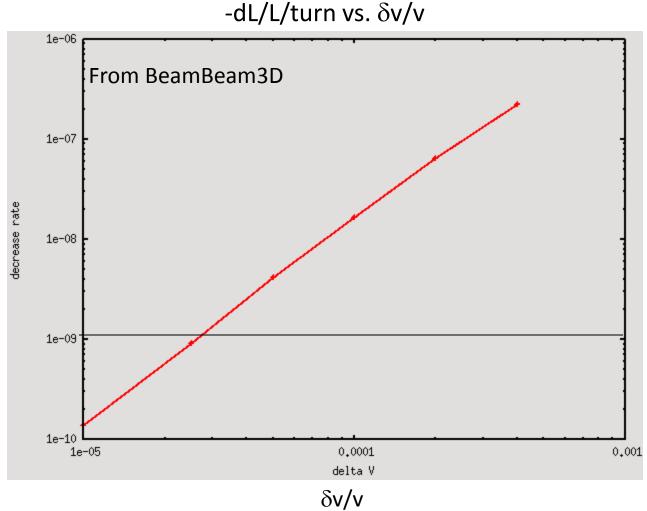
$$a = \frac{\beta J}{2\sigma^2} \quad \frac{da}{d\sigma} = -\frac{2a}{\sigma}$$

$$\langle \Delta J^2 \rangle = \frac{4a^2}{\sigma^2} \frac{\partial U(a, \psi)}{\partial a} \frac{\partial U(a, \psi)}{\partial a} \langle \Delta \sigma^2 \rangle$$

$$= 8 \left(\frac{Nr_p \Delta \sigma}{\gamma \sigma}a\right) \sum_{\substack{k=-\infty \\ m \to \infty}} \frac{k^2 U'_k(a)^2 \sinh G}{\cosh G - \cos 4\pi k\nu}$$

$$\stackrel{0.9}{\sigma}$$
• Similar sensitivity as phase
$$\int_{\substack{k=-\infty \\ m \to \infty}} \int_{\substack{k=-\infty \\ m \to \infty}} \int_{\substack{k=-$$

CC Voltage White Noise Tolerance with Beta* Leveling



For luminosity decrease rate below 10⁻⁹/turn,

the voltage noise amplitude should be controlled below 3x10⁻⁵

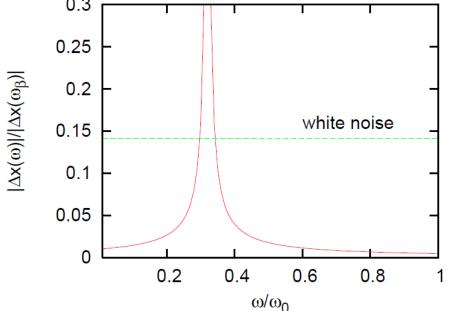
Noise characteristics

 Beam has frequency component of external excitation, crab phase modulation frequency.

$$\ddot{x} + 2\lambda\dot{x} + \omega_{\beta}^{2}x = \int f(\omega)e^{-i\omega t}d\omega \sum_{n=-\infty}^{\infty} \delta(t - nT_{0}) \qquad \lambda = \frac{\omega_{0}}{2\pi}G$$

$$x = \frac{\omega_{0}}{2\pi}\sum_{p=-\infty}^{\infty} \int d\omega \frac{f(\omega)e^{-i\omega_{p}t - i\varphi}}{\sqrt{\left(\omega_{\beta}^{2} - \omega_{p}^{2}\right)^{2} + \left(2\lambda\omega_{p}\right)^{2}}} \qquad \omega_{p} = \omega + p\omega_{0}$$

$$\varphi = \tan^{-1}\frac{2\lambda\omega_{p}}{\omega_{\beta}^{2} - \omega_{p}^{2}}$$



Beam response for sinusoidal and white noise

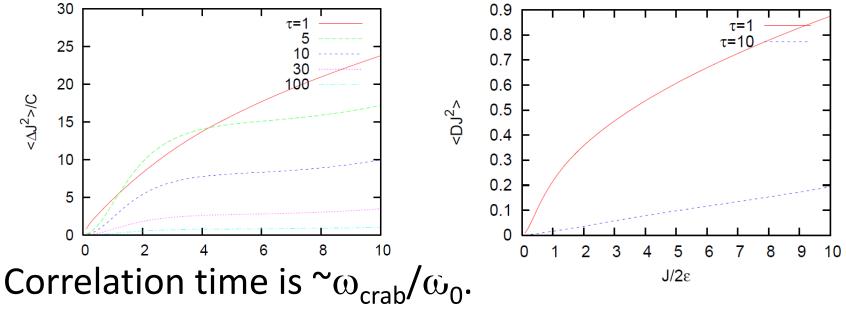
Measurement of noise level in KEKB

Jul 24, 2007

- Tune, beam-beam mode ~3kHz, f₀=11kHz
- 2 unit=20dB for power, 1/10 for amplitude.

by K. Akai, Y. Morita

Correlation time dependence phase noise (coll. offset) voltage noise (beam size)



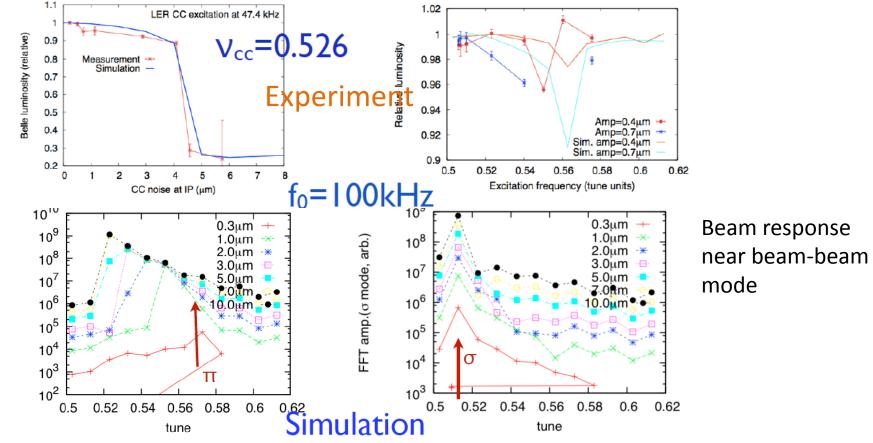
 $\omega_0 = 2\pi x 11 kHz$

 ω_{crab} =2 π x1kHz in typical. Diffusion is suppressed 1/2 (offset) and 1/10(size).

 ω_{crab} =2 π x3kHz may couple beam-beam mode.

Complex beam response seen in KEKB

- When the noise frequency range overlaps with beam-beam mode (3kHz for LHC), complex phenomena may appear.
- Strong and weak beam losses are seen near σ and π mode tunes, respectively.



Summary

- Luminosity degradation due to the beam-beam effect in the presence of external noise has been studied.
- Studied noise characteristics are
 - 1. White noise of collision offset
 - 2. Time correlation noise of collision offset
 - 3. White noise in betatron motion with damping
 - 4. Sinusoidal noise in betatron motion with damping
- Feedback noise corresponds to 3rd. The luminosity degradation is similarly expressed as 1 by

$$\frac{\Delta L}{L} = 10.8 \times \left(\xi_{tot} \frac{\Delta x}{\sigma}\right)^2 \qquad \Delta x = \frac{\delta x}{\sqrt{G}}$$
$$\frac{\Delta x}{\sigma} = 5 \times 10^{-4} \quad \text{for} \quad \frac{\Delta L}{L} = 10^{-9} \quad \xi_{tot} = 0.02$$

Summary II

 Crab cavity noise corresponds to 4 which is similar as 2. Phase error tolerance is 10⁻⁵-10⁻⁴ for white noise. Beam does not respond the crab cavity noise f<2kHz.

1/10 of white noise for f < 2kHz, Phase error tolerance 10^{-4} - 10^{-3}

 For crab voltage noise, beam size fluctuation, luminosity degradation is expressed by

$$\frac{\Delta L}{L_0} = 0.4 \left(\xi \frac{\Delta \sigma}{\sigma}\right)^2 = 0.4 \left(\xi \frac{\sigma_z \theta_{crab}}{\sigma} \frac{\Delta V}{V}\right)^2$$

Tolerance is 10^{-5} - 10^{-4} for white noise. Since frequency range is 1kHz, the tolerance may increase 10 times easier, 10^{-4} - 10^{-3} .

Noise characteristics

• Equation of motion.

$$\ddot{x} + 2\lambda \dot{x} + \omega_{\beta}^{2} x = \int f(\omega)e^{-i\omega t}d\omega \sum_{n=-\infty}^{\infty} \delta(t - nT_{0})$$
Fourier expansion
$$x = \int \hat{x}(\omega)e^{-i\omega t}d\omega$$

$$\int (-\omega^{2} - 2i\lambda\omega + \omega_{\beta}^{2})\hat{x}(\omega)e^{-i\omega t}d\omega = \int f(\omega)e^{-i\omega t}d\omega \sum_{n=-\infty}^{\infty} \delta(t - nT_{0})$$
operate
$$\frac{1}{2\pi}\int e^{i\omega t}dt$$

$$(-\omega^{2} - 2i\lambda\omega + \omega_{\beta}^{2})\hat{x}(\omega) = \frac{1}{2\pi}\int d\omega' f(\omega')\int dt e^{-i(\omega'-\omega)t} \sum_{n=-\infty}^{\infty} \delta(t - nT_{0})$$

$$=\frac{1}{2\pi}\int d\omega' f(\omega')\sum_{n=-\infty}^{\infty}e^{-i(\omega'-\omega)nT_0} = \frac{1}{2\pi}\int d\omega' f(\omega')\omega_0\sum_{p=-\infty}^{\infty}\delta(\omega'-\omega-p\omega_0)$$
$$=\frac{\omega_0}{2\pi}\sum_{p=-\infty}^{\infty}f(\omega+p\omega_0)$$

$$\hat{x}(\omega) = \frac{\omega_0}{2\pi} \sum_{p=-\infty}^{\infty} \frac{f(\omega + p\omega_0)}{-\omega^2 - 2i\lambda\omega + \omega_{\beta}^2}$$

$$x = \int \hat{x}(\omega)e^{-i\omega t}d\omega = \frac{\omega_0}{2\pi} \sum_{p=-\infty}^{\infty} \int d\omega \frac{f(\omega + p\omega_0)e^{-i\omega t}}{-\omega^2 - 2i\lambda\omega + \omega_{\beta}^2}$$

$$=\frac{\omega_0}{2\pi}\sum_{p=-\infty}^{\infty}\int d\omega \frac{f(\omega)e^{-i\omega_p t}}{\omega_{\beta}^2 - \omega_p^2 - 2i\lambda\omega_p} \qquad \qquad \omega_p = \omega + p\omega_0$$

$$= \frac{\omega_0}{2\pi} \sum_{p=-\infty}^{\infty} \int d\omega \frac{f(\omega)e^{-i\omega_p t - i\varphi}}{\sqrt{\left(\omega_\beta^2 - \omega_p^2\right)^2 + \left(2\lambda\omega_p\right)^2}} \qquad \varphi = \tan^{-1}\frac{2\lambda\omega_p}{\omega_\beta^2 - \omega_p^2}$$