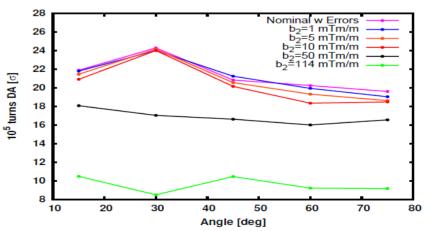


Effect of crab cavity non linearities with and without beam-beam: results of weak-strong simulations

<u>Javier Barranco García</u>, Tatiana Pieloni, Rogelio Tomás García

Acknowledgements: María Navarro Tapia, Rama Calaga


Introduction

• All CC designs are not axially symmetric thus giving rise to time varying high order multipoles in the form (for a normal quadrupole),

$$\Delta x' = -b_2 x \cos\left(\frac{\omega_{cc} z}{c} + \phi + \phi_{RF,quad}\right)$$

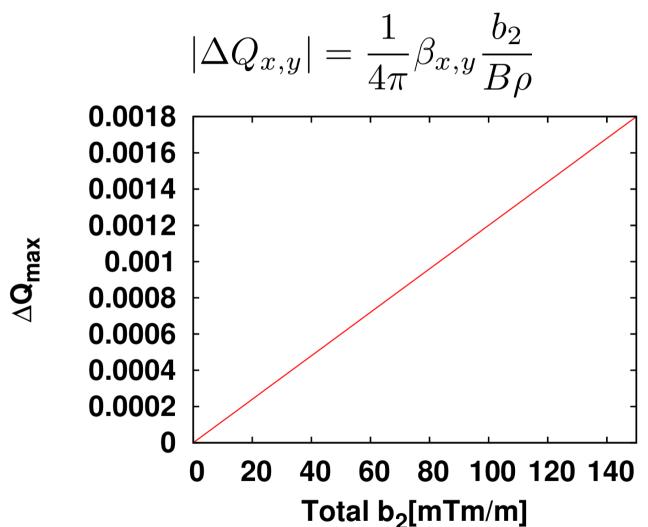
- These multipoles oscillate with f_{cc} not being possible to correct them with "traditional" techniques. Instead they should be minimized by design.
- In the HLLHC 2012 meeting some tolerances were given for a certain scenario (slhcv3.1b optics and magnets errors).
- The 2012 results presented a large initial dynamic aperture value made RF multipoles effect quite visible driving tight tolerances for 1σ DA decrease consideration. Nevertheless beam loading tolerance (< 1 mm) was the driving factor.
 - QWCAV (only HV) $|d_{x,y}| < 2 \text{ mm}$
 - RWCAV (HH or HV) $|d_{x,y}| < 0.75 \text{ mm}$
 - 4RCAV (HH or HV) $|d_{x,y}| < 2.7 \text{ mm}$

J. Barranco, R. Tomas "*RF multipoles: modelling and impact on the beam*", 2nd Joint HLLHC-LARP meeting.

Crab Cavities - RF Multipolar Kicks Simulations

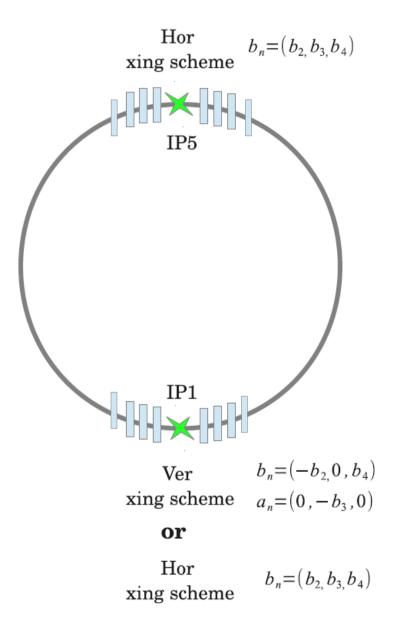
Normal components:

bn [mT/m=1] *	Latest prototypes (as of 2012)			
	RF-dipole cavity	Double QW cavity	4-rod cavity	
b2	0	0	0	
b3	4530	1080	1162	
b4	0	0	0	
b5	-0.4·10 ⁶	-0.097·10 ⁶	-2.3·10 ⁶	
b6	0	0	0	
b7	-288 10 ⁶	0	-666·10 ⁶	


* Normalized to a nominal deflecting voltage of 10 MV

 Skew components: Ongoing simulations with realistic fabrication errors to assess the order of magnitude.

Courtesy of M. Navarro Tapia, R. Calaga


Optical aberrations

• A non-zero b2 could produce a non-neglilible tuneshift.

• Other higher order multipole optical aberrations were studied in the past and showed not significant effect.

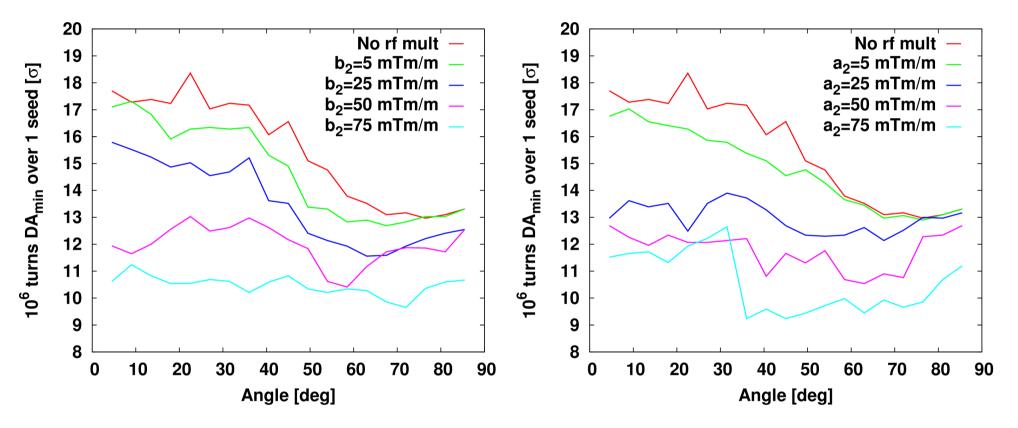
Reminder Crossing Schemes

- Symmetric horizontal CCs would present only normal components b_n .
- Baseline scenario is Horizontal crossing at IP5 and Vertical at IP1. This is preferred from the beambeam point of view.
- For a 90° rotated cavity (V crossing) the multipolar content becomes,

 $b_n = \{-b_2, 0, b_4\}$ $a_n = \{0, -b_3, 0\}$

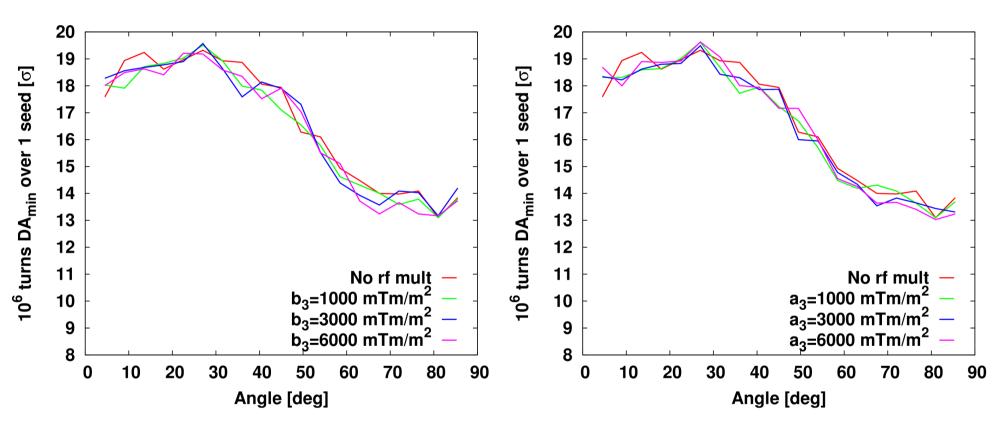
So in a HV scenario there is a natural compensation of the b₂ effect. While the HH case is a worst case scenario.

Dynamic Aperture Simulations

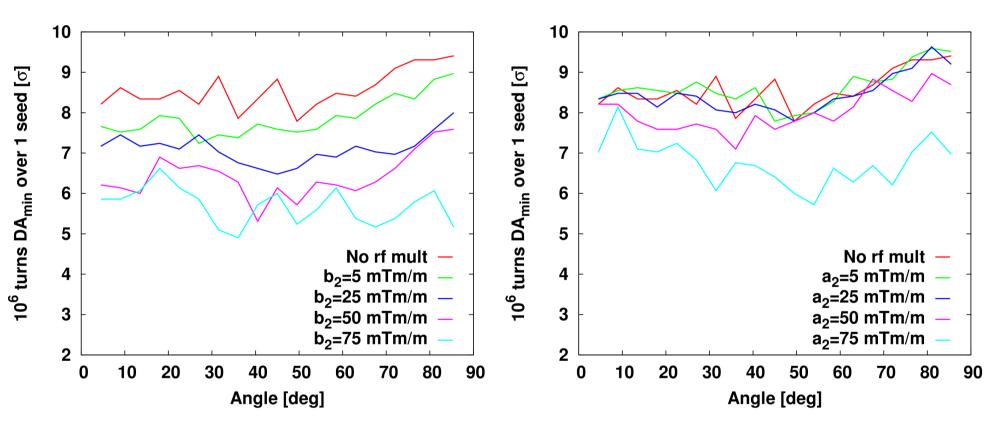

- Studies done using the **SixDesk environment** running in both LSF and BOINC queues.
- The HLLHCv1.0 optics are used with main parameters,

Parameter	Value	
$\beta^*_{x,y}$ [cm] IP1/5	15	
$\sigma_{z}[cm]$	7.5	
θ[µrad]	590	$ \beta^*$ levelling
I[ppb]	1.1 10 ¹¹	
f _{cc} [MHz]	400	
f _{RF} [MHz]	400	
$\epsilon_{n,x,y}$ [µrad]	2.5	

- Beam-beam effects HO(6D)+LR at IP1&5.
- Latest magnets errors included but only 1 seed evaluated due to time constraints.

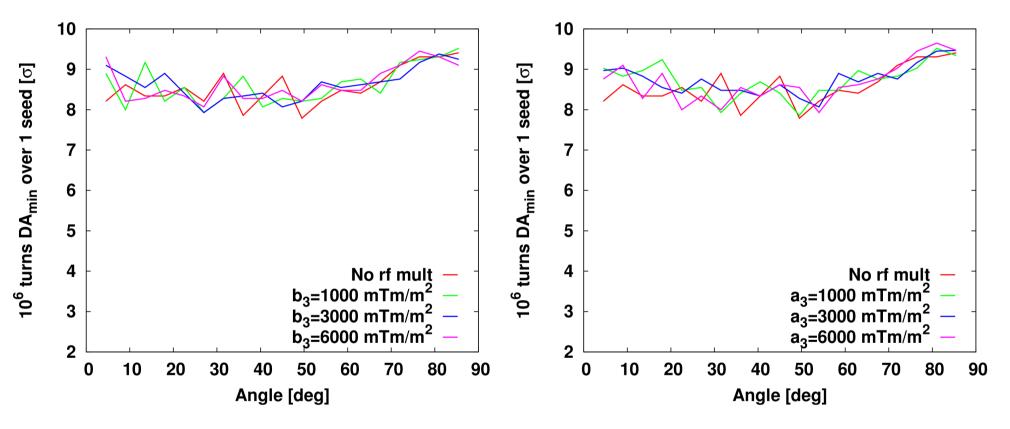

Simulations w/o beam-beam interactions

Right plot is an actual realistic scenario H_{IP5} - V_{IP1} with symmetric CCs (only b3).


- Tracking over 10⁶ turns and scanning 19 phase space angles.
- The b₂ value quoted is normalized per 10MV deflecting voltage.
- Only magnets errors (1 seed) $\rightarrow DA_{min} \sim 13\sigma$.
- Similar DA evolution for b₂ and a₂.

Simulations w/o beam-beam interactions

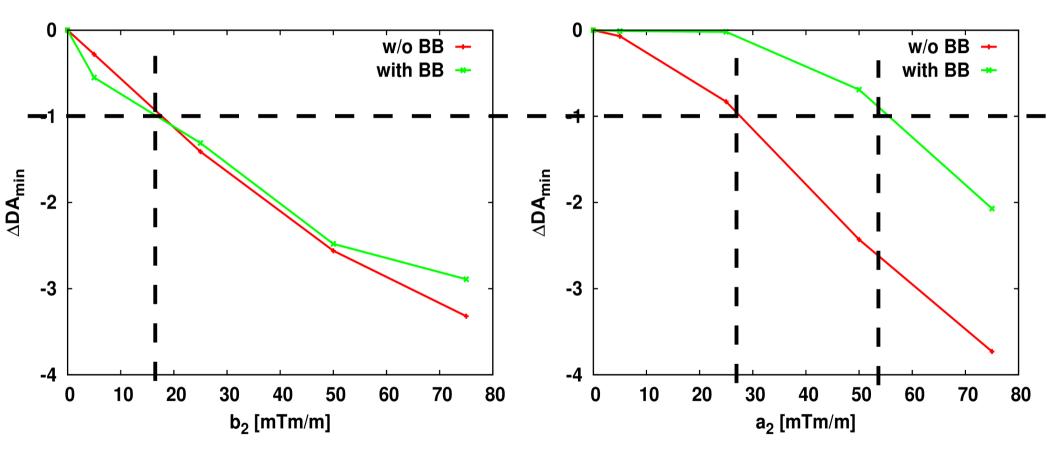
- Tracking over 10⁶ turns and scanning 19 phase space angles.
- The b₃ value quoted is normalized per 10MV deflecting voltage.
- Only magnets errors (1 seed) $\rightarrow DA_{min} \sim 13\sigma$.
- No DA impact observed in both cases b₃ and a₃.


Simulations with beam-beam interactions

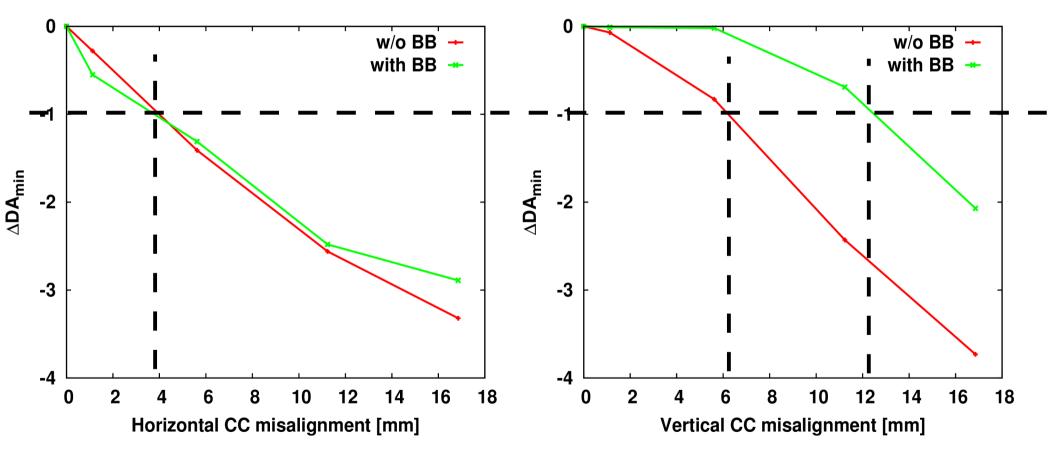
- Tracking over 10⁶ turns and scanning 19 phase space angles.
- The b₂ value quoted is normalized per 10MV deflecting voltage.
- Only magnets errors (1 seed) $\rightarrow DA_{min} \sim 8\sigma$.
- Faster DA decay for b_2 than for a_2 (related to coupling?).

Simulations with beam-beam interactions

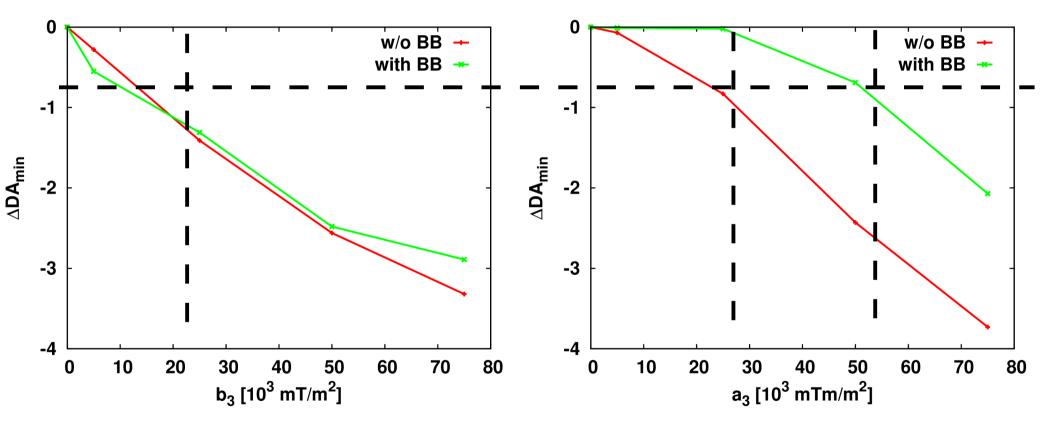
Right plot is an actual realistic scenario H_{IP5} - V_{IP1} with symmetric CCs (only b3).



- Tracking over 10⁶ turns and scanning 19 phase space angles.
- The b₃ value quoted is normalized per 10MV deflecting voltage.
- Only magnets errors (1 seed) $\rightarrow DA_{min} \sim 8\sigma$.
- No DA impact observed in both cases b₃ and a₃.


Tolerances criteria

- These simulations aims not to set hard limits for tolerances but rather orders of magnitude.
- As in the past an **arbitrary** maximum DA decrease allowed of 1σ is considered for all scenarios.
- Three tolerances are given,
 - Maximum b₂ and a₂.
 - Maximum displacement (d_x, d_y) of b_{3,a_3} . (for a worst case of RF Dipole Cavity $b_3=4530 \text{ mTm/m}^2$).
 - Maximum b_{3},a_{3} for a displacement $d_{x}=d_{y=1}$ mm (beam loading tolerance).


Maximum b_{2,a_2} tolerance

Maximum CC misalignment tolerance

Maximum b₃,a₃ tolerance

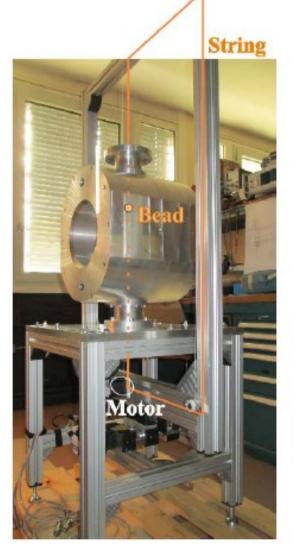
Conclusions

- The ideal baseline scenario V_{IP1}-H_{IP5} and symmetric cavities (i.e. only b₃) is OK with and w/o BB.
- Summary tolerances for 1σ drop for the 3 criteria,

	w/o BB	with BB
$b_2[mTm/m]^*$	16	16
$b_3 (d_x=1mm) [mTm/m^2]^*$	18 10 ³	18 10 ³
$d_x(b_3=4530 \text{ mTm/m}^2) \text{ [mm]}$	4	4
$a_2[mTm/m]^*$	27	53
$a_3 (d_y=1mm) [mTm/m^2]^*$	28 10 ³	55 10 ³
$d_y(a_3=4530 \text{ mTm/m}^2) \text{ [mm]}$	6	12

* Normalized to Vcc=10 MV

- Simulations performed for 1 error seed. Full 60 seeds study might tighten tolerances, however not below beam loading tolerances .
- All the tolerances are assuming an arbitrary criteria and should be adapted to a particular scenario.


Back Up Slides

Crab Cavities - RF Multipolar Kicks Measurements

- A bead-pull setup has been built for the purpose.
 - Versatile workbench to host the 3 different crab cavities.
 - String in a closed loop (4 pulleys).
 - Vertical movement of the bead (1 motor).
 - Horizontal movement of the bead (2 motors + 2 linear units).

Latest progress:

- Installation of a security stop mechanism for the linear units.
- Design and fabrication of two weakly coupled antennas.
- Ongoing work: code writing in LabVIEW (graphical programming platform).
 - Centralize the control of the vectorial network analyzer.
 - Control de movement of the 3 motors.
 - Synchronize the measurements.

Courtesy of M. Navarro Tapia, R. Calaga