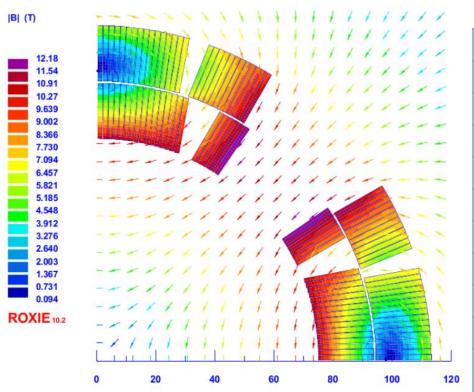
MQXF Quench Protection Analysis

HiLumi workshop - KEK, Tsukuba

Vittorio Marinozzi

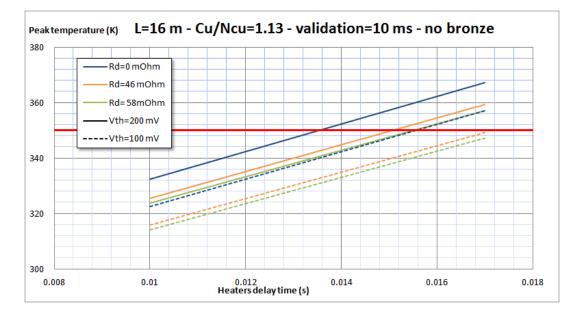


UNIVERSITÀ DEGLI STUDI DI MILANO

11/18/2014

0.1 Introduction

Critical parameters make the protection study **very challenging**


Aperture diameter	(150 mm)
Gradient	140 T/m
Maximum length	2 x 4 m
Nominal current	17500 A
Magnetic stored energy (2 x 4m)	(12 MJ)
Inductance	8. <u>3 mH</u> /m
Conductor peak field	(12.2 T)
Operating temperature	1.9 K
Strand diameter	0.850 mm
Bare cable width	16.638 mm
Bare cable thin/thick edge thickness	1.462/1.673 mm
Insulation thickness	0.150 mm
Strand Number	40
Copper/non-copper ratio	1.2
Copper RRR	≥100

Contents:

- 1. MQXF standard **conservative** protection study
- 2. Inter-Filament-Coupling-Currents (IFCC) effects on the **differential inductance**
- 3. MQXF protection study considering **dynamic effects**

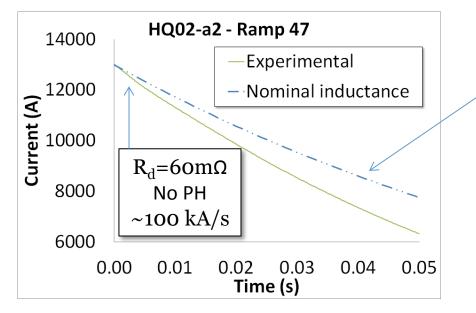
MQXF standard conservative protection study

1.1 MQXF conservative study

<u>Hot spot temperature</u> very close to the upper limit of **350 K**^[1]

 Protection heaters only on the **outer layer**

Protection improvements:


- Designing protection heaters on the inner layer^[2]
- Improving the protection simulation using less pessimistic assumptions

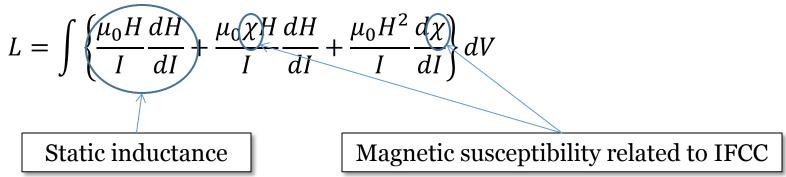
[1] G. Manfreda et al., "Quench Protection Study of the $Nb_3Sn Low-\beta$ Quadrupole for the LHC Luminosity Upgrade" IEEE Trans. on Appl. Supercond., vol. 24, no.3, June 2014.

[2] M. Marchevsky, "*Design optimization and testing of the protection heaters for the LARP high-field Nb3Sn quadrupoles*", presented at ASC2014.

Inter-Filament-Coupling-Currents (IFCC) effects on the differential inductance

2.1 Inductance reduction for high dI/dt

HQ simulation using the nominal inductance, experimentally measured at low dI/dt (<50 A/s)^[1]


There is an evident disagreement, starting from the very beginning

- Similar behavior has been experimentally observed in various HQ and LQ decays
- > It is not due to quench back, because of its suddenness
- It has benefic effects on the protection, therefore its simulation in MQXF could be very useful
- The explanation has been investigated as an electromagnetic coupling with Inter-Filament-Coupling-Currents (IFCC) in the strand, due to high dI/dt, which causes a considerable inductance reduction

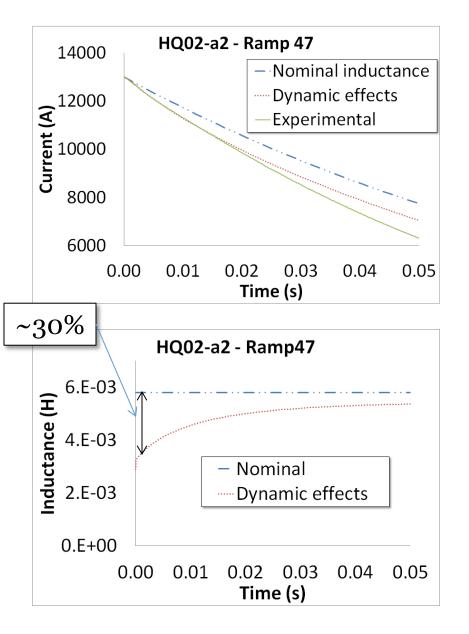
[1] H. Bajas et al., *"Cold Test Results of the LARP HQ Nb3Sn quadrupole magnet at 1.9 K"*. Presented at the Applied Superconductivity Conference, Portland, Oregon, USA, 2012.

2.2 IFCC as magnetization currents

> The **differential inductance** can be computed as:

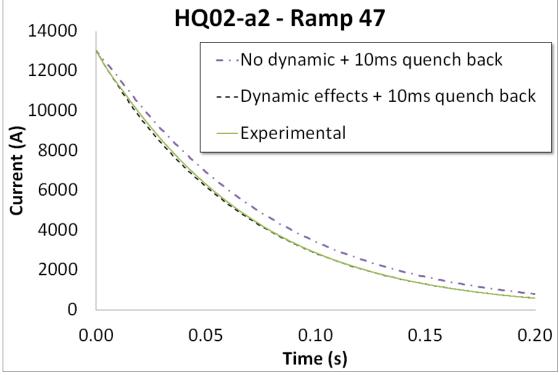
Under exponential assumptions, the magnetic susceptibility related to the IFCC can be computed as:

$$\chi = \frac{2\lambda\tau \left(e^{-\frac{t}{\tau_e}} - e^{-\frac{t}{\tau}}\right)}{\tau e^{-\frac{t}{\tau}} - \tau_e e^{-\frac{t}{\tau_e}} - 2\lambda\tau \left(e^{-\frac{t}{\tau_e}} - e^{-\frac{t}{\tau}}\right)} \qquad \tau = \frac{\mu_0}{2\varrho_e} \left(\frac{p}{2\pi}\right)^2 \text{ is the IFCC decay time constant}^{[1]}}$$


$$\tau_e = \frac{L}{R_d} \text{ is the current decay time constant}}$$

$$\lambda \text{ takes into account the insulation and the packing in the strand}$$

> This model has been implemented in **QLASA**^[2]

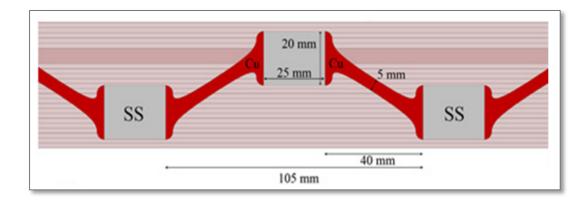

[1] M. N. Wilson, "Superconducting Magnets", Clarendon Press Oxford, 1983.
[2] L. Rossi and M. Sorbi, "QLASA: A computer code for quench simulation in adiabatic multicoil superconducting windings", Nat. Inst. of Nucl. Phys. (INFN), Rome, Italy, Tech. Rep. TC-04-13,2004.

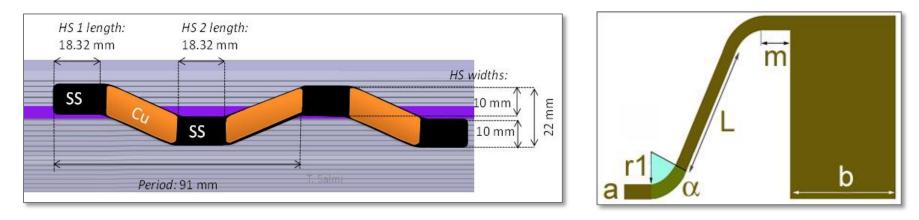
2.3 HQ simulation

- Considering dynamic effects allows to **simulate well** the experimental decay from the very beginning to t=~15 ms
- In this decay, the MIITs produced considering dynamic effects are ~20%
 less then using nominal inductance
- The disagreement after 15 ms could be due to quench back

2.4 IFCC and quench back

Quench back after 10 ms together with dynamic effects allow to reproduce the decay until its end

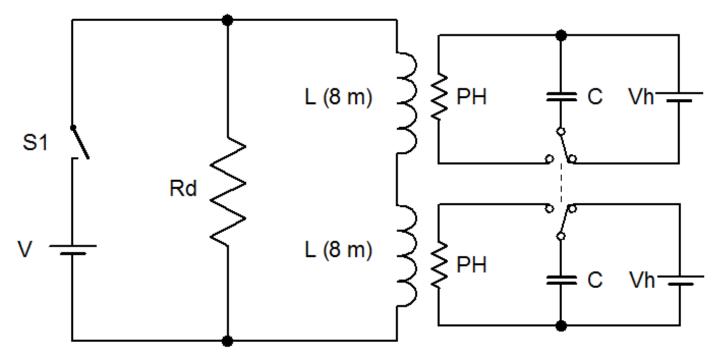

Conclusions:


- Both quench back and dynamic effects are needed in order to reproduce the decay until the end
- Quench back alone is not enough
- QLASA cannot predict the **time** of quench back occurring, but it can now predict the **inductance reduction** due to dynamic effects. Improvement of QLASA is under way.

MQXF protection study considering dynamic effects

3.1 MQXF inner-layer quench heaters

In order to **improve** the protection, various quench heaters for the **inner layer** have been designed^[1]



The protection heaters are designed in order to avoid as best as possible the damages coming from helium bubbles

[1] M. Marchevsky, "*Design optimization and testing of the protection heaters for the LARP high-field Nb3Sn quadrupoles*", presented at ASC2014.

3.2 MQXF protection scheme

Dumping resistance	48 mΩ
Maximum voltage to ground	800 V
Voltage threshold	100 mV
Validation time	10 ms
Heaters delay time from firing (inner layer) (CoDHA) ^[1]	12 ms
Heaters delay time from firing (outer layer) (CoDHA) ^[1]	16 ms

[1] T. Salmi et al., "A Novel Computer Code for Modeling Quench Protection Heaters in High-Field Nb3Sn Accelerator Magnets", IEEE Trans. Appl. Supercond. vol 24, no 4, 2014.

3.3 MQXF protection with IL-PH

> Dynamic effects are **not yet** considered in these simulations

No inner layer PH	Inner Layer PH	
35.5 MA ² s	32.8 MA ² s	
330 K	290 K	

The MQXF hot spot temperature decreases of ~40 K inserting inner layer protection heaters

Open question: <u>Are these protection heaters reliable for helium bubbles issue?</u>

3.4 MQXF protection considering IFCC

No inner	No inner layer		Inner Layer
layer PH	PH+ IFCC		PH + IFCC
35.5 MA ² s	34.2 MA ² s	32.8 MA ² s	31.3 MA ² s
330 K	306 K	290 K	266 K
(365 K)	(342 K)	(311 K)	(288 K)

The numbers between parenthesis are referred to a failure of half of the heaters

- > IFCC dynamic effects decrease the MQXF hot spot temperature of ~25 K. The effect is therefore appreciable
- The hot spot temperature is enough below the designed limit (350 K) also in the case of no inner-layer protection heaters, considering IFCC dynamic effects (306 K). Anyway this case does not ensure protection redundancy (342 K)
- Further improvements could come from quench back, which has not been considered (work in progress)

Conclusions:

- Previous standard conservative works on the MQXF protection did not ensure the magnet safety.
- Protection has been **improved** designing protection heaters for the **inner layer**. This improvement gives a margin of additional **40** K in the hot spot temperature.
- ➤ The IL-PH suffer the helium bubbles issue.
- An electromagnetic model for the IFCC has been developed and validated with HQ experimental data in order to compute the inductance reduction during fast decays.
- The IFCC model has been applied for the MQXF protection study. It gives additional 25 K margin in hot spot temperature. A further improvement could come from quench back.
- ▶ Both IFCC dynamic effects and IL-PH ensure the magnet safety and redundancy.
- Another possible solution could be to use CLIQ together with outer layer PH. This analysis is under study.