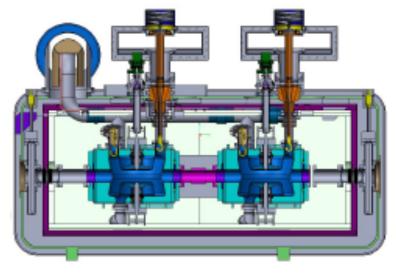

2017 - 2018 SPS Crab Cavity Validation Run: Status and Issues

Alick Macpherson BE-RF-SRF CERN


20/11/2014 4th Joint HiLumi LHC-LARP Annual Meeting

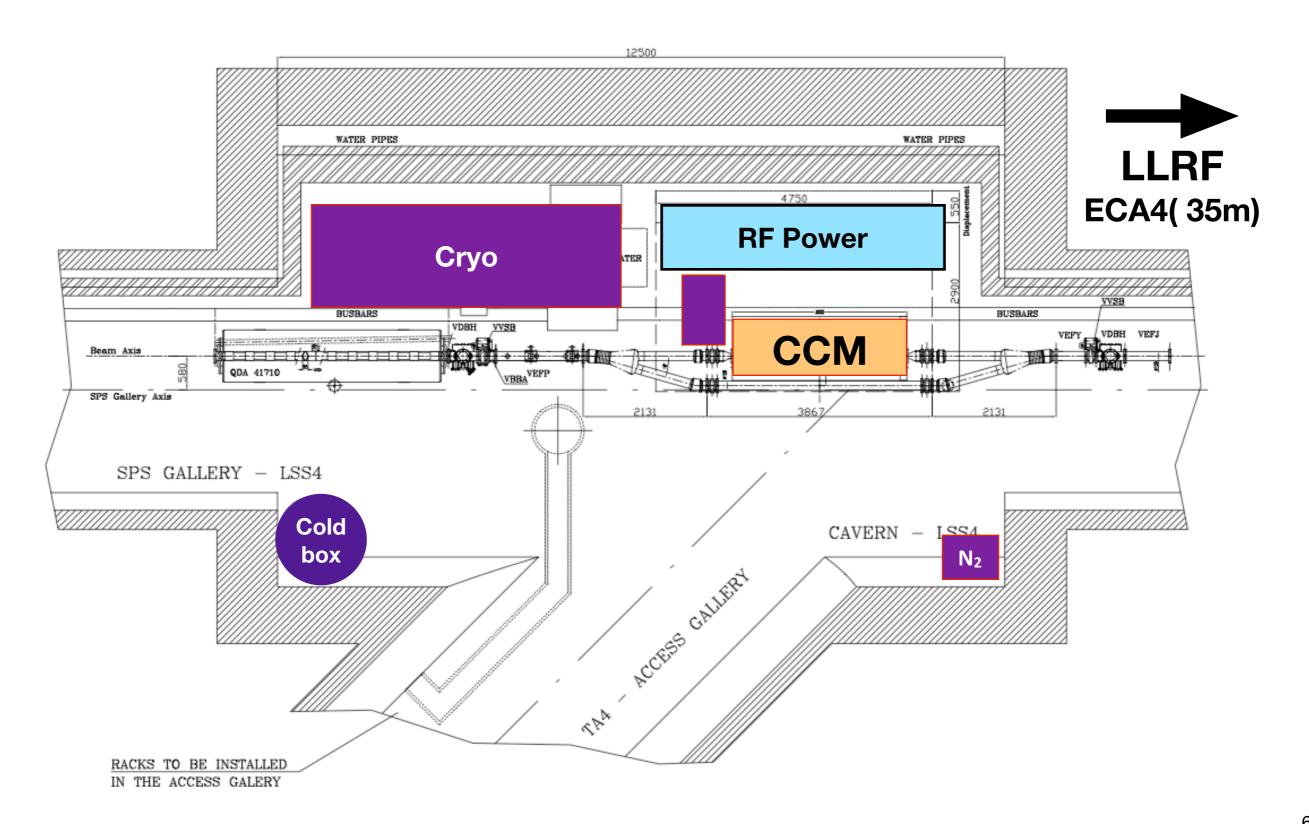
Post HL-LHC Review Conclusions (May 2014)

- SPS Test is of Crab cavity Prototypes is critical
 - Prepare for 2 cavity types to be tested in the SPS before LS2
 - Validation of crab functionality + assessment of machine protection issues
- Crab Cavity prototypes to be tested in SPS
 - Double Quarter Wave design
 - RF Dipole design

- SPS Crab Cavity Installation
 - 2 cavities of the same type in a common cryomodule
 - Cryomodules must be easily exchangeable
 - Cavities operate at 2 Kelvin
 - Cryomodule must be remotely movable in/out of beam

SPS Crab Validation Run: What is to be tested

- Demonstration of cavity deflecting field (amplitude and phase control) with proton beam including injection, energy ramp and coast at energies ranging from 26-450 GeV.
- Verification and control of cavity field (amplitude and phase), frequency, tuning sensitivity, input coupling, power overhead and HOM signals.
- Establish operational cycle with crab cavities and demonstrate the possibility to operate w/o crab cavity action (make them invisible) by both counter-phasing the two cavities or by appropriate detuning.
- Measurements of beam orbit centering, crab optics and bunch rotation with available instrumentation such as BPMs and head-tail monitors.
- Demonstrate Multi cavity feedback operation
- Demonstrate robust 2-cavity cryomodule operation trigger quench in one cavity without inducing quench in the other
- Verification of machine protection aspects and functioning of associated slow and fast interlocks.
- Test HOM coupler operation with high beam currents and associated power levels as a function of filling scheme, instability thresholds for deflecting and higher order modes and impedance measurements of the crab cavities.
- Measurable emittance growth induced by the crab cavities

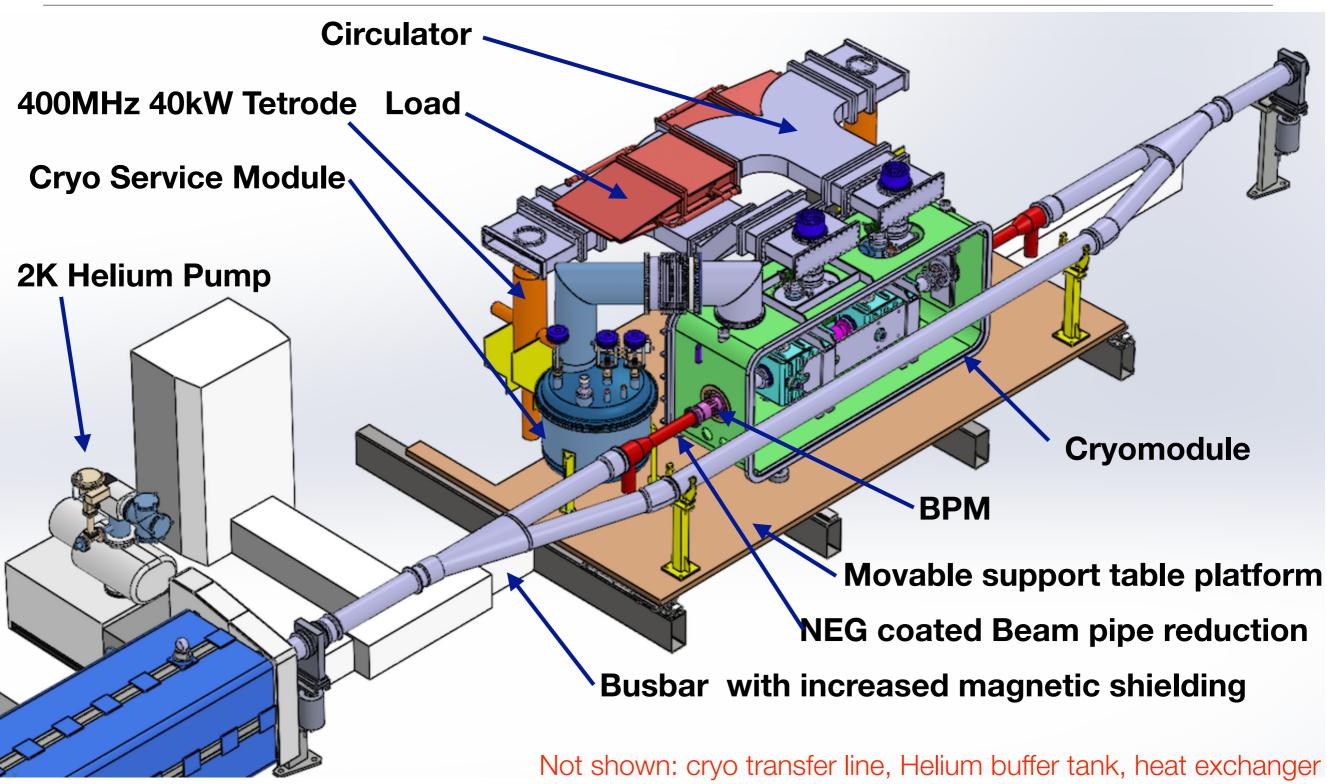

Taken directly from the WP4 PDR

SPS Crab Validation Program: 5 Steps

- Validation Run requires dedicated SPS MD time
 - LHC injection and SPS Fixed Target beams not possible when crabs in
- Measurement programme broken in to 5 categories
 - 1. Cavity setup, conditioning, beam injection and initial cavity operation
 - 2. Long Term Effects: Coasting Beam [120 -270 GeV]. Low Intensity
 - 3. Short Term Effects: Cycling Beam: [26-450 GeV]. Low intensity
 - 4. Machine Protection Issues and Quench studies
 - 5. High Intensity Studies
 - Each MD step: 2 to 3 slots of 8hrs with beam
 - Validation of test of 1 cavity type:
 - ~12 slots of 8hrs of dedicated MD time spread over 1 year
 - Its necessary to be installed for 2017 SPS run.

SPS Crab Integration Considerations

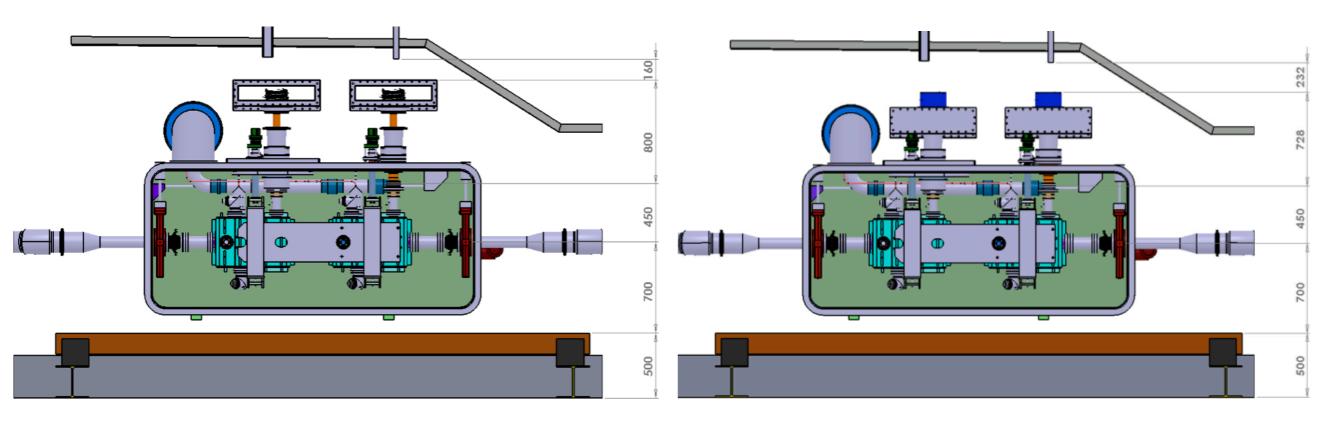
Baseline SPS location: SPS LSS4



SPS Crab Control Room

- Crab Control room: Share ECA4 level -2 with AWAKE
 - Space for up to 7 racks in barracks + rack space walkway in ECA4 Cavern
 - Cable routing through the ECA4-ECX4 shielding not yet understood

Crab Zone Layout

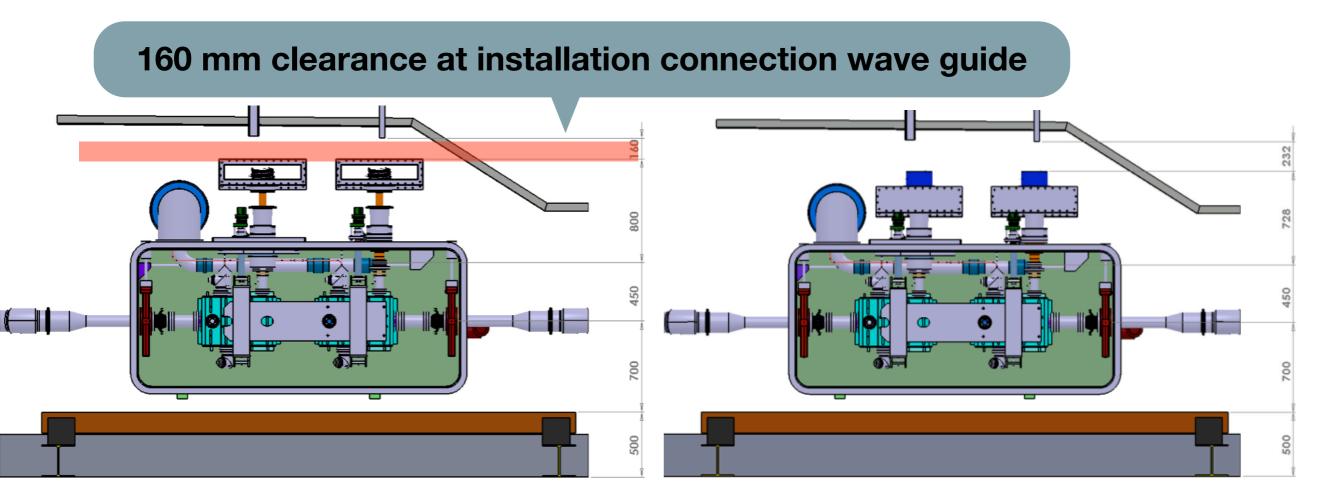

Baseline Integration model being assembled with Integration Office

Overview of Status: SPS crab cavity run

- SPS Cavities:
 - DQW design released for production: October 2014
 - RFD design to be released for production: December 2014
- Cryomodule + Cryo 2K service module
 - Conceptual design expected end of December 2014
- Crab LSS4 Integration
 - September 2014: integration model launched with CERN Integration Group
- Cryogenics in LSS4: Heat load is still an issue
 - During LS1: Helium pumps with services installed.
- Beam line
 - Conceptual models of Y-Chamber, support table and BPMs done
 - Preparing to launch technical designs needed for ECR
- RF Power
 - Cabling requirements specified and Tetrodes under test
 - Integration model of BA4 and ECA4 area need to be launched
- LLRF + Controls
 - LLRF:Ultra fast FB loop not needed => tetrode integration options?

Crab Installation Considerations: Space

- Installation: Vertical height constrained by existing cable trays
 - Some (mostly empty) cable trays will have to be dismounted/modified
 - Installation of power coupler and wave guide is the space constrained step

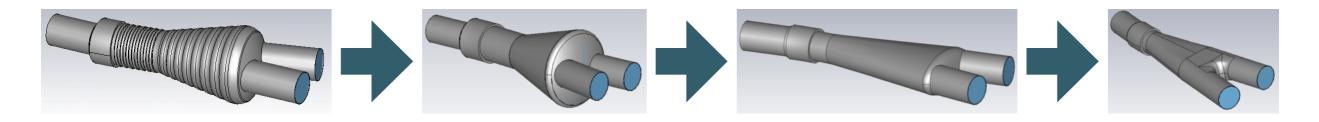


Installation: Power coupler + waveguide connection to Cryomodule

Installed crab cavity system

Crab Installation Considerations: Space

- Installation: Vertical height constrained by existing cable trays
 - Some (mostly empty) cable trays will have to be dismounted/modified
 - Installation of power coupler and wave guide is the space constrained step



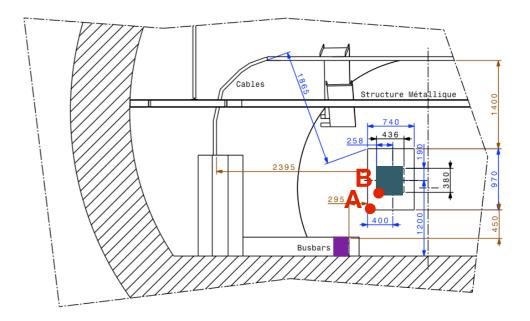
Installation: Power coupler + waveguide connection to Cryomodule

Installed crab cavity system

Beam Line Considerations: New Y-Chamber

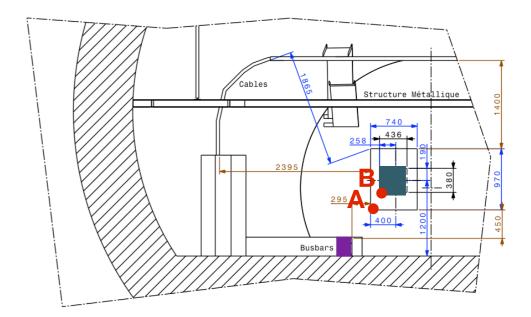
- Cryo module size => new Y-chamber design required
 - Opportunity taken to improve impedance design
 - Design presented and endorsed by Impedance Working Group
 - No significant impedances within beam spectrum (< 1.5 GHz)
 - Propagating modes do not reach cavity due to aperture reduction
 - Propagating modes into SPS reduced wrt existing design

Model	Ζ	Zx (kOhms/m)	Zy (kOhms/m)
Installed 12 Degree Y-Chamber	2.8	0.33	0.31
Proposed 16 Degree Y-Chamber	0.43	0.21	0.85


• Preparing to hand over to prepare Vacuum group for mechanical design, design approval, and manufacture.

Beam Line Considerations: Ambient Magnetic Field

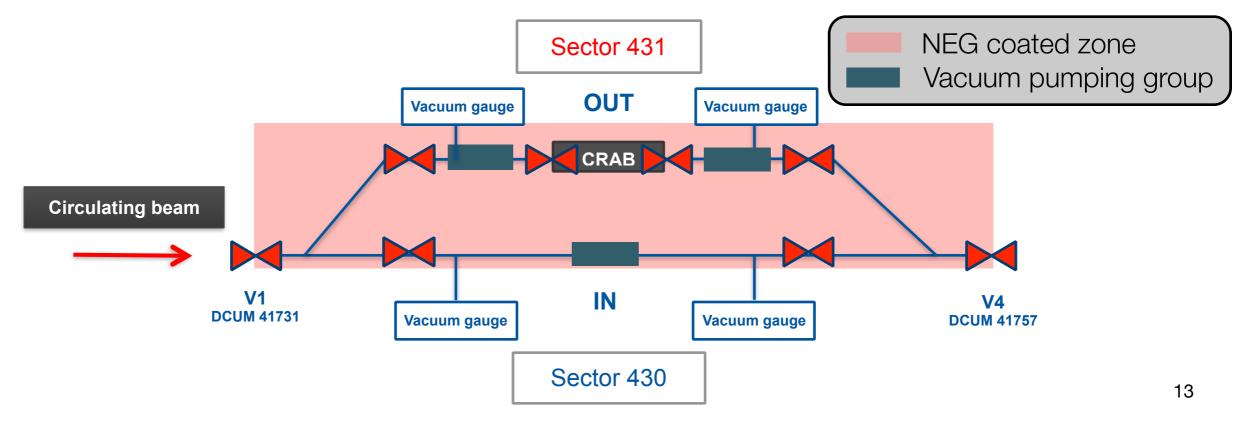
- Requirement
 - Ambient field < 1uT at cavity
- Initial 2D simulation results
 - consider only main magnet busbars
- Identify most critical position.
 - Pt A: Outer surface of cryomodule
 - Pt B: Outer surface of He Vessel



• Take worst operational case => 2 x normal operational levels

Beam Line Considerations: Ambient Magnetic Field

- Requirement
 - Ambient field < 1uT at cavity
- Initial 2D simulation results
 - consider only main magnet busbars
- Identify most critical position.
 - Pt A: Outer surface of cryomodule
 - Pt B: Outer surface of He Vessel

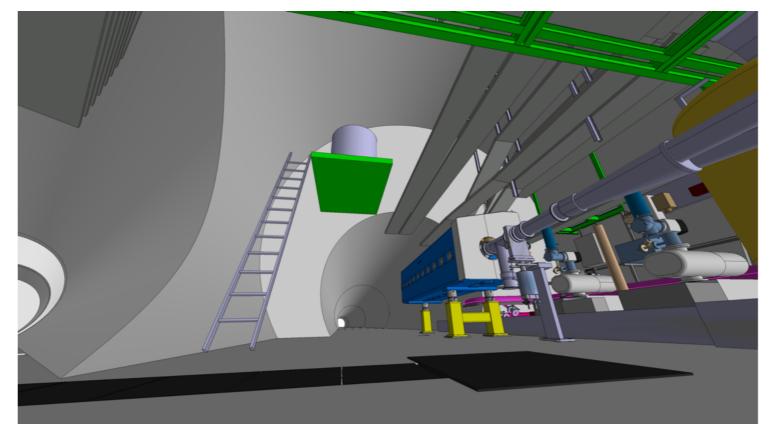

- Source of ambient magnetic field: SPS main magnet busbars
 - Take worst operational case => 2 x normal operational levels

	In-Beam Transverse Stray field [mT]		Out-of-Beam Transvesre Stray field [mT]	
Busbar shielding	Pt A	Pt B	Pt A	Pt B
Stainless steel (or no cover)	0.4 (0.57)	0.2 (0.39)	0.6 (0.85)	0.3 (0.51)
Constructional steel, 2 mm thick	0.3	0.2	0.4	0.2
Constructional steel, 10 mm thick	0.1	0.1	0.2	0.1
Details: https://edms.cern.ch/document/1377806		Moocur	ad Santamb	or 2011

Details: <u>https://edms.cern.ch/document/1377806</u> J Bauche & A Macpherson Measured September 2014 Error in measurement ± 20%

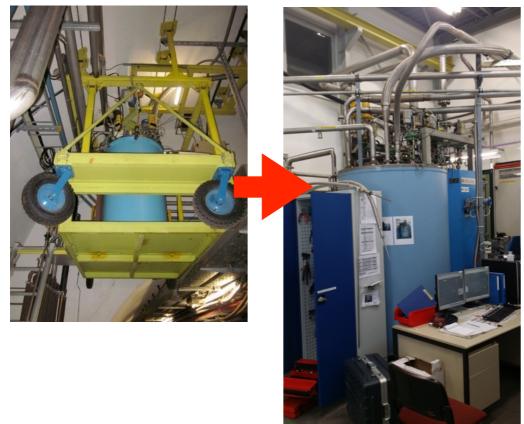
Beam Line Considerations: Vacuum

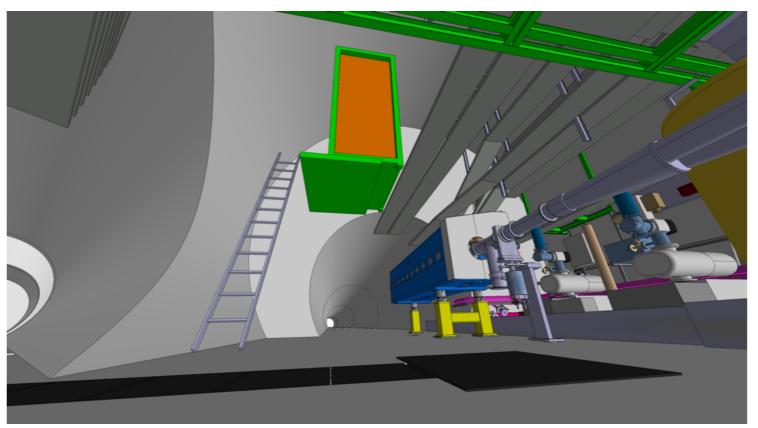
- Vacuum condition required in cryo module: $< 10^{-10}$ mbar
 - Vacuum conditions: should be achieved in way that mimics LHC crabs
 - => Y-chamber, bypass, and crab beam pipe to be NEG coated
 - Large NEG cartridges required up & downstream of crab installation
 - aCarbon coatings could be applied in SPS on either side of the crab installation to mitigate influence of general SPS vacuum.
- Vacuum valve and pump layout
 - This sectorisation permits rapid exchange of cryomodule


Cryogenics: Heat Load Issues

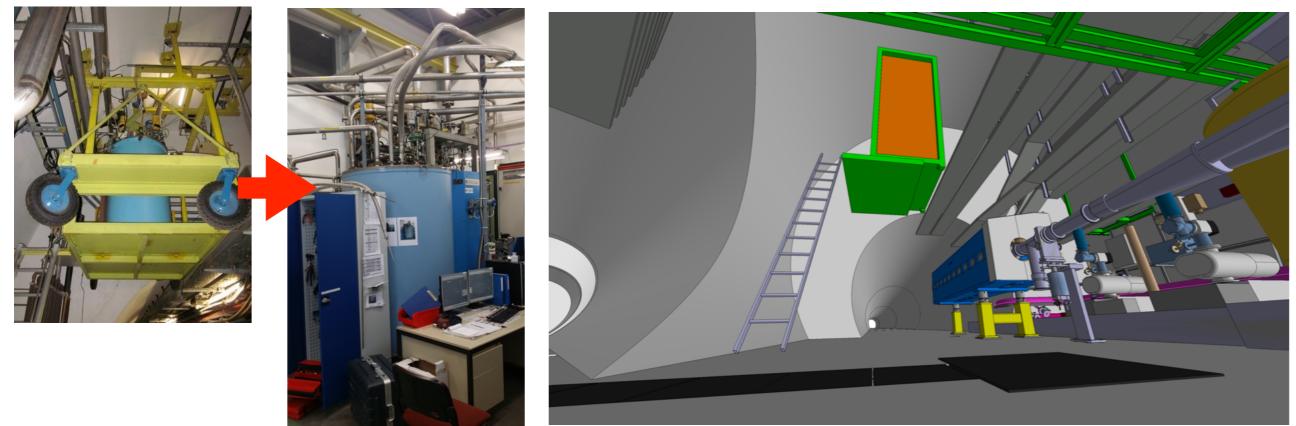
- Expected Heat load and required cold box capacity (with safety margin):
 - Total Static Heat load:
 - 26.6 W => Required cold box capacity: 1.32*1.5 = **1.98 g/s**
 - Dynamic Heat load:
 - 13.4 W @ 2K + 30 W @ 80 K => Cold box capacity: 0.6*1.5 = 0.9 g/s
- Installed TCF20 cold box used for 4.5K COLDEX operation
 - TCF20 Capacity: 1.1 g/s => does not have capacity for static heat load
 => TCF20 must be replaced with more performant system
- Present baseline solution: Install TCF50 from CERN cryo lab
 - TCF50: expected maximum capacity 2.5 3.0 g/s
 - Integration issues to be resolved => schedule implications
- Dynamic heat load
 - Install buffer tank to cover dynamic heat loads over an 8-12hr period
 - Refill buffer tank over night(i.e. crab out of beam during refill)

Cryogenics: Cryo Cold Box Integration


- TCF20 -> TCF50 upgrade: Needs to be studied in detail
 - LSS4 installation: 4 weeks + Preparation & Surface installation: 5 months
 - Integration Issues: TCF50 is significantly larger (1.9 x 1.3 x 3.0 m)
 - Integration in LSS4 zone is difficult: cannot block SPS transport zone
 - Integration may still be feasible => cryo team needs clear requirement.

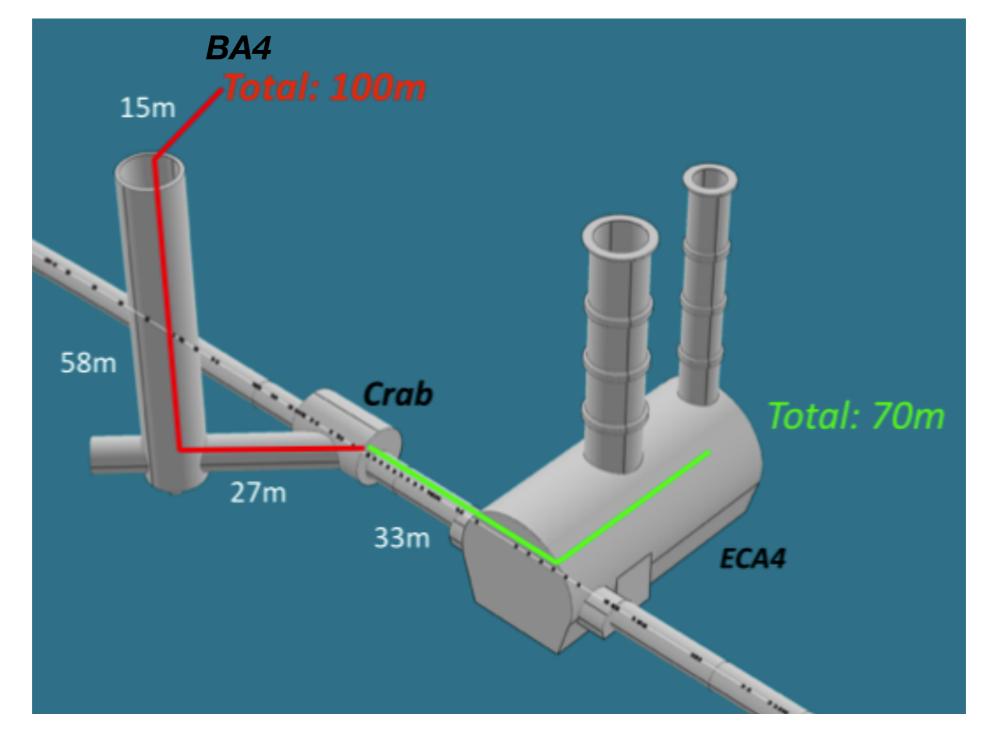


Cryogenics: Cryo Cold Box Integration


- TCF20 -> TCF50 upgrade: Needs to be studied in detail
 - LSS4 installation: 4 weeks + Preparation & Surface installation: 5 months
 - Integration Issues: TCF50 is significantly larger (1.9 x 1.3 x 3.0 m)
 - Integration in LSS4 zone is difficult: cannot block SPS transport zone
 - Integration may still be feasible => cryo team needs clear requirement.

Cryogenics: Cryo Cold Box Integration

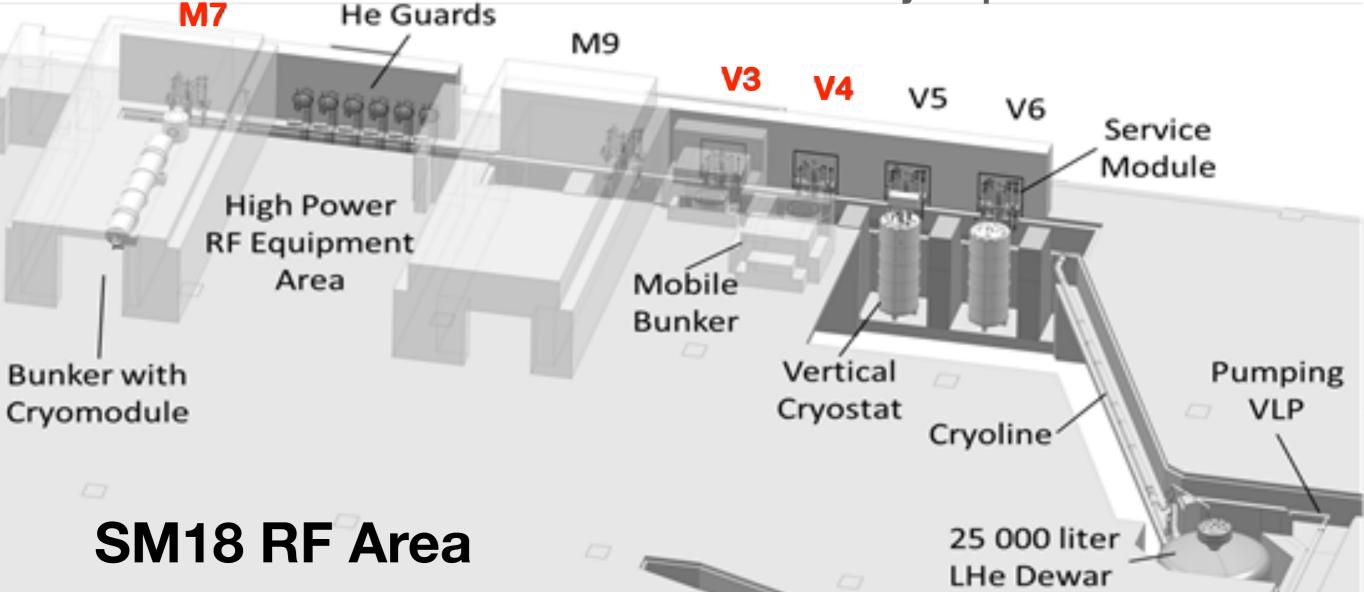
- TCF20 -> TCF50 upgrade: Needs to be studied in detail
 - LSS4 installation: 4 weeks + Preparation & Surface installation: 5 months
 - Integration Issues: TCF50 is significantly larger (1.9 x 1.3 x 3.0 m)
 - Integration in LSS4 zone is difficult: cannot block SPS transport zone
 - Integration may still be feasible => cryo team needs clear requirement.



Alternatives:

- If not possible to install in LSS4 => TCF50 has to go to ECA4 or BA4
- Is it sensible to consider relocating to another SPS location? ...

Cryogenics: Cryo Cold box alternative locations


- Relocating Coldbox to ECA4 or BA5: Need to install helium transfer line
 - Issue of time and cost : time => time without beam + money (~4000 CHF/m)

Other Integration Issues: SM18 RF Test Facility

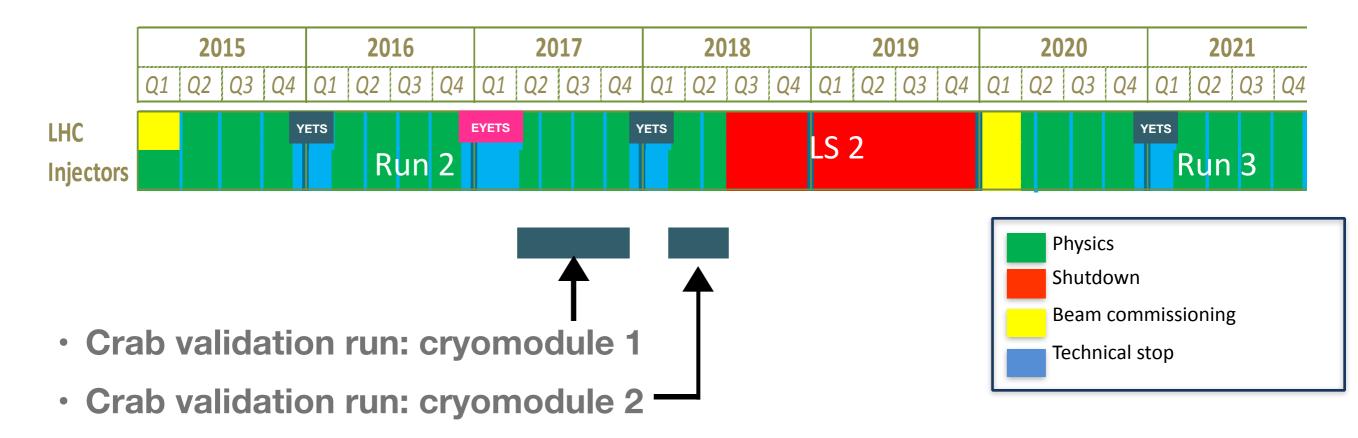
- SM18 Clean room
 - Cryomodule assembly Q1 2016
- M7 Bunker: Horizontal Tests
 - CRAB cryomodule 2016

- V3 and V4 Vertical Teststand in 2014 - 2015
 - Cavity tests: PoP Design
 - Quench studies
 - LLRF studies
 - V4 not yet operational ...

SM18 Preparations

- Up-grading of vertical test stand inserts for Crab testing
 - Upgrade of V3 and V4 cryostat inserts
- Preparations for Horizontal bunker M7 for Crab cryo module testing
 - 1st step: Model of "As installed" SM18 infrastructure with Integration Group

Courtesy Jose Ramon Cornejo Barrientos & Antoine Kosmicki


SPS Crab Installation Schedule Considerations

SPS Crab Cavities: Preparation Schedule

- Assumptions
 - SPS crab validation run is during 2017 and 2018 SPS operation
 - Y-Chamber essential: Remotely moveable table => dedicated beam MD
 - Two cavity types are to be tested in the SPS => two different cryo modules
 - Only one cryo module can be installed in the SPS at any one time.
 - Infrastructure and initial cryo module installation only possible in a (E)YETS
- Schedule for cryo module preparation
 - Q1 of 2016: Cryo module assembly in SM18
 - Q2 of 2016: Cryo module + cryo service module validation in SM18
 - Q3 of 2016: RF Conditioning of cryo module in SM18
 - December 2016: 1st Cryomodule ready to install in SPS
 - Q3 2016: Assembly of 2nd cryo module starts

SPS Schedule based on the LHC roadmap

- Present Schedule
 - LS1 Finishing => LHC restart => very limited SPS access
 - LS2 Starting in 2018 (July) => 18 months + 3 months BC
- Machine stops
 - Year End Technical Stop: YETS
 - Extended Year End Technical Stop: EYETS

Access periods: Year End Technical Stops

- Installation opportunities in the SPS schedule
 - YETS and EYETS periods
 - Technical Stops during SPS running: Each stop is limit to 4 days or less
- Year end technical stops
 - YETS 2015-2016 = 3w + 2w* + 7w = 12 weeks (Beam to Beam in LHC)
 - This will allow approximately 4 to 5 weeks of Access in the SPS.
 - EYETS 2016-2017 = 3w + 2w* + 13w = 18 weeks (Beam to Beam in LHC)
 - This will allow approximately 10 weeks of Access in the SPS.
 - YETS 2017-2018 = 3w + 2w* + 7w = 12 weeks (Beam to Beam in LHC)
 - This will allow approximately 4 to 5 weeks of Access in the SPS.
 - * Christmas break

Dates courtesy of David McFarlane SPS Technical co-ordinator

SPS Crab Cavities: Ideal Installation Schedule

- 2015-2016 YETS: Installation of infrastructure
 - Removal of COLDEX
 - Upgrade Cryo cold box + install crab cryo infrastructure for 2K operation
 - Replace bus bar shielding, install support table + RF power
 - Installation of Y-Chamber, beam lines, and vacuum valves and pumps
- During 2016 SPS run: Validation of infrastructure
 - Commissioning of cryo system
 - Validation of in/out movement of support table with cold transfer lines
 - Re-confirmation of RF power operation
- 2016-2017 EYETS: Crab Installation
 - Cryo module installation, beam line pump down, alignment of cryomodule
 - Installation of LLRF into ECA4 + cabling + deployment of control software
- During 2017 SPS run: SPS Crab validation run
 - 2 to 3 months of conditioning/RF conditioning
 - Crab cavity measurement programme

This schedule would be nice but is not really justifiable in terms of crab preparation milestones and wider HL-LHC program

SPS Crab Cavities: Realistic Installation Schedule

- To be taken into account
 - Cryo module not ready until 2016-2017 EYETS
 - Cold box upgrade is substantial + likely not feasible in 2015-2016 YETS
 - COLDEX request to run in 2016
- What is a reasonable baseline scenario
 - 2015-2016 YETS: Install of cryo cold box upgrade infrastructure
 - 2015-2016 YETS: Cabling to ECA4
 - 2016: Use SM18 M7 bunker to validate support table + RF power + Ychamber + cryo service module + cryomodule
 - 2016-2017 EYETS:
 - Remove COLDEX. Install crab infrastructure and cryo module
 - Upgrade cryo cold box in parallel.
 - 2017: Commission and run as originally planned

This schedule is optimistic but feasible. Installation must be carefully choreographed & 2015-2016 YETS used for preparation work

SPS Revised Schedule: EYETS planning

Optimistic sequential planning estimate

Activity in LSS4	How Long
Removal of COLDEX	4 days
Cryo cold box upgrade (in LSS4)	4 weeks
Installation of new bus bar shielding	4 days
Installation + alignment of support table	3 days
Installation of Tetrodes, circulators and loads	2 days
Installation of cryo 2 K infrastructure + Cryomodule	5 days
Installation of beam line + cryo connections + leak tests	3 days
Vacuum conditioning	1week
Alignment after pump down	4 days
Cabling	2 weeks
Contingency	1 week
Total Time	13 weeks

• EYETS stop: 10 wks of SPS access => some work items to be in parallel

Assumes 2015-2016 YETS used for preparatory work items

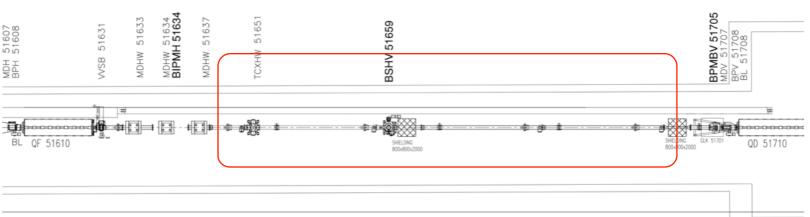
Baseline Fall Back plans

- Baseline plan is to install in 2016-2017 EYETS into SPS LSS4
 - Ideally cold box upgrade in 2015-2016 YETS but expect 2016-2017 EYETS
- What happens if Cryomodule is not ready for EYETS
 - Option A: Install during 2017 SPS run: two 4-5 days SPS technical stops
 - Assumes that all support infrastructure installed in EYETS
 - Option B: Install in 2017-2018 YETS
 - With present LS2 start date => only 1 cryo tested before LS2
 - If LS2 start moved back:
 - Possibility of swapping cryomodule in an SPS technical stop
 - Would place heavy demand on dedicated MD time during SPS run

Only realistic option for testing two different cryo modules: Install first cryomodule in 2016-2017 EYETS

Cryo module exchange in an SPS Technical Stop

- Minimum Time to swap a cryo module: 1 SPS technical stop of 4 days
 - Day 1
 - Venting and removal of beam pipes -> 6hrs
 - Removal of existing Cryo module -> 4hrs
 - Day 2
 - Installation of new CM: 4hrs
 - Alignment of cryomodule: 4hrs
 - Pumpdown of beam pipe reduction transitions & Y-chambers overnight
 - Day 3
 - Remounting of bypass beam pipe: 4hrs
 - Pumping of bypass beam pipe: 24hrs
- Things to be done once SPS beam reinstated
 - Bakeout of beam pipe reduction transitions => to be done remotely
 - remote monitoring and only short access to remove once done
 - bakeout + reconditioning expected to take 1 week


Summary

- LSS4 of SPS is the baseline installation site
 - Control room + LLRF in ECA4. RF power in LSS4 alcove
- Revised integration/installation schedule
 - 2016: SM18 M7 bunker needed for infrastructure + cryo module testing
 - All crab infrastructure installation pushed to 2016-2017 EYETS
 - ~10 week window to install LSS4 crab infrastructure.
- Issues
 - Cryo Cold box upgrade schedule needs to be studied ...
 - Need to move Y-Chamber and support table designs into ECR phase
 - Compatibility with COLDEX: Needs confirmation on when COLDEX stops
 - COLDEX runs until EYETS then removed. Crabs installed until LS2
 - ... Possibility of alternative SPS location?: to be discussed

Alternative SPS Crab location?

- Very new point of discussion point
 - **Question**: Given COLDEX program and Crabs cold box upgrade needed in LSS4, is it better to have 2 test facilities with cryogenic capacity in SPS?
- Preliminary look at alternative locations in the SPS: Only LSS5
 - Tunnel option: Space constraints?

- Alcove option?
 - Similar integration issues as LSS4?
 - Other users?

