

HL-LHC Lay-out and integration

G. Arduini, O. Bruning, F. Cerutti, S. Chemli S. Claudet, R. Calaga, R. De Maria, D. Duarte Ramos, I. Efthymiopoulos, L. Esposito, S. Fartoukh, P. Fessia, M. Manfredi, Y. Muttoni, J. Osborne, H. Prin, L. Rossi, F. Sanchez Galan, E. Todesco, M. Zerlauth

Integration studies by C. Collazos, J.P. Corso, C. Magnier.
Presented by P. Fessia

Summary

- HL-LHC baseline and options
- IR 1-5 machine lay-out
- IR 1-5 system arrangement: baseline and option
- Other integration activities for HL
- Conclusions and next steps

HL-LHC BASELINE

Collimation upgrade

\rightarrow Secondary TCSPM
\rightarrow IP 3
Primary TCP TCPP
\rightarrow IP 3

||c|
$\xrightarrow{\rightarrow}$ Beam diagnostic \quad IP 4

Cryo line	CB

HL-LHC OPTIONS

IR1 and IR5 according to approved plan LHCLSXHT0010 index A conforming to optics version HL-LHC V 1.1
New version next spring

LAY-OUT STATUS IN THE IR 1,5

IR1-IR5 TAXS \rightarrow Q2B

TAS to $\overline{\mathrm{Q}} 1$ area under study, functionalities identified, but detailed equipment and assembly study recently started by WP12 (vacuum). Possibilities for BMP to be cold or part of the TAS could be discussed

New cryostat design required, possible need to use not standard shape (elliptical) and integrating system to manage vacuum and quench forces keeping interconnects of simple opening.

Under study by WP3

Initial equipment studies lead to $\overline{\mathrm{a}}$ short $\overline{\mathrm{T}} \overline{\mathrm{A}} \overline{\mathrm{S}}$ to $\overline{\mathrm{Q}} \overline{1}$ area with more reduced access respect to the LHC. This is not compatible with future HL-LHC requirements Higher radiation dose call for remote operation/redundancy and very high reliability. The study of this areacould require the shift of Q1 farther from_IP-

$$
H L-L H C
$$

IR1-IR5 Q3 \rightarrow BBLR

IR1-IR5 TAXN $\rightarrow \mathrm{Q} 4$

 New Energy deposition simulations are being I completed and should confirm the necessity of the mask. In any case it is needed to redesign the mechanical interfaces of the collimators (space, 5th axis and integrated protection I_ - - - _ design with the TAXN)
$H L-L H C$

 work at 1.9 K .
Modifications, in order to optimize the work and I the costs, requires the use of the magnets in IR1 in II IR5 and vice-versa. In addition the Q4 can accept heat exchanger tube only over a section of the lenoth therefore cryogenic studies are needed II

Present baseline features modification/change of the DFBA in a DFA being the terminal of a SC link feeding the 600 A and 6 kA circuits of the ARC. Possible other solution as the use of the radiation hard PC in the RR that would limit modifications and ease machine integration under evaluation

HL-LHC IR 1,5 MAIN SYSTEM DISTRIBUTION, BASELINE

(ax) $\oiint H L-L H C$

Pt1 \& Pt 5: crab cavity RF services concept

(in) $\oiint \oiiint H L-L H C$

Various possibilities have been studied

Baseline underground I:

 cryogenics- Cavern for Cryogenics only
- Creating a new shaft
- Connection to machine tunnel: LHC machine side
- Floor of the cryo cavern same level of machine tunnel

Baseline underground II:

 crab cavities- Installation of loads and circulators underground to reduce coax diameter $\rightarrow 2$ coax in the same core
- Enlargement required to comply with limited precision of long vertical cores and to install loads and circulators

Baseline surface I:

crab cavities

Baseline surface II:

all other equipment

- New Access road: $85 \mathrm{~m}(\mathrm{~L}), 6.5 \mathrm{~m}(\mathrm{~W})$
- Galleries for services: $130 \mathrm{~m}(\mathrm{~L})$,

Cross section: $2.0 \mathrm{~m}(\mathrm{~W})$ by $2.5 \mathrm{~m}(\mathrm{H})$

HL-LHC IR 1,5 MAIN SYSTEM DISTRIBUTION OPTION

Option: underground

High
Luminosity
LHC

Option surface: all other equipment

MACHINE SIDE, WITH NEW SHAFT + PC

7) SD (Steel)

- Dimension: $20 \times 30=600 \mathrm{~m} 2$
- $\operatorname{Hmax}=12.0 \mathrm{~m}$
- Services (in;out): HV, water, SC Links; ?
- Crane not costed (20t?)

8) WARM COMPRESSOR (Conc)

- Dimension: $15 \times 40=600 \mathrm{~m} 2$
- $\operatorname{Hmax}=9 \mathrm{~m}$
- Services (in;out): HV, water, Cryo pipes ; ?
- 20t crane not costed
10)PARKING, ROADS, GALLERIES
- Car Park: 20 places added
- New Road: $180 \mathrm{~m}(\mathrm{~L}), 8 \mathrm{~m}(\mathrm{~W})$
- New Access road: 70m(L), 6.5 m (W)
- Galleries for services: $110 \mathrm{~m}(\mathrm{~L})$, Cross section $2.0 \mathrm{~m}(\mathrm{~W})$ by $2.5 \mathrm{~m}(\mathrm{H})$
- Landscaping: 6,600m2

Other ongoing work for integration

- New RF dedicated cryogenic plant in IR4

- Q5 in point 6

- TAN in point 8

CRNMHL$\oiiint L H C$

Conclusions

- The Lay-out for IR1 and IR5 has been discussed putting in evidence the open issues and the new iteration should be prepared for next spring
- The baseline (and an option) proposal for the civil engineering and equipment installation in IR1 and IR5 has been shown. It will be used for detailed costing in the next weeks
- In the next months, the preparation of the cost and schedule review, and deepening the technical analysis of some solutions could bring important changes to the baseline and therefore to the integration plan
- Underground civil engineering infrastructure still need to be revised in term of radiation attenuation

Next spring shopping list first view...I
Major changes in the lay-out are probably required by the equipment design and the mechanical integration. This will need full validation and optimization from the whole project especially from optics (WP2).
In particular (here below possible values to be confirmed by the WPs in charge)

- The preliminary study of the TAS to Q1 region seems to indicate that it should be increased (+1000 mm ?)
- The interconnects length between magnet (Q1 to D1, 5 ICs) shall be increased. Today in the present lay-out we have allocated 810 mm . 925 mm are sure to be needed as today, but the inventory is not complete we need still to have better evaluation of the BPM mechanical length. Probably total of $\approx+1000 \mathrm{~mm}$ on D1 position $(+190 /+200$ on each interconnect)
- The interconnection length between the Q2a and Q2b could need further increase if phase separators have to be installed in that position (requires finalisation of the cryogenic/cryostat pipe scheme)
- The MQXF cold masses probably need more space for the interconnection box. Preliminary estimations are the following
- $\quad+400 \mathrm{~mm}$ for Q1 and Q3, total +800 mm
- $\quad+200 \mathrm{~mm}$ for Q2a and Q2b, total +400 mm

This should also be linked to the final decisions of the bus bar routing (internal/external) and of the compensation system pre-design

- Possible changes in the MQXF design (passed cable review and upcoming magnet design review) that could impact the magnet length
- Confirmation of the lengths for D2 and Q4
- Finalization of the preliminary design and therefore lengths of the MCBRD (D2 correctors) and MCBYY (Q4 correctors)
- Definition of the option to be chosen for the collimators installation in the D2-Q4 area
- Revise of the needs of the TCLMA mask in front of D2 (see L. Esposito talk in this meeting)
- Tuning of length and position of the TAXN (see L. Esposito talk in this meeting)

Above modifications could possibly lead to a movement of D1 towards the arc of $4000 \rightarrow 6000 \mathrm{~mm}$ and many other changes especially in D2 to Q4

- Q10 with extra sextupole if possible

Next spring shopping list first view...II

IR6:

- New configuration with stronger Q5

IR4: $1^{\text {st }}$ lay-out with

- Hollow e-lenses
- Other RF systems ($200 \mathrm{MHz}, 800 \mathrm{MHz}$)
- In case of need LHC crab cavity test
- Beam instrumentation requirements (BGV, BSRT light extraction line, fast wire scanners, ...)

Important: we shall try to introduce all changes in IR1 and IR5 in one go in order to make the iteration process the most effective as possible

ANNEX

Mechanical length will be larger
Especially because of
i/o of capillaries

CM to						
Welding flare	Bellow CM/beam screen	Capillary I/O	PIM	BPM	Capillary I/O	CM to Welding flare

Total
923 mm

160 mm
To be added distance capillary exit to welding flange

SPACE REQUIREMENT SYSTEM BY SYSTEM

CRAB CAVITIES

(2) \# ${ }^{\mu L-L н с ~}$

Crab cavities

	Requirement	Area	Baseline/Option
RF power $(2 \times \mathrm{IP})$	$2 \times[3 \times 14] \mathrm{m}$	$2 \times 42 \mathrm{~m}^{2}$	Underground/surface
LLRF racks $(2 \times \mathrm{IP})$	$2 \times[(5.6+4.4+7) \times 3.8] \mathrm{m}$	$2 \times 65 \mathrm{~m}^{2}$	Underground/surface
LLRF central racks $(1 \times \mathrm{IP})$	$2 \times 3.8 \mathrm{~m}$	$8 \mathrm{~m}^{2}$	Underground/surface
HVPS $(2 \times \mathrm{IP})$	$2 \times[4 \times 16] \mathrm{m}$	$2 \times 65 \mathrm{~m}^{2}$	Surface

Remark

LLRF requires Electromagnetic shielding and it is radiation sensitive

CRYOGENICS

WARM COMPRESSOR BUILDING 600m2

Infrastructure at LHC technical area

Illustrations : Serge Claudet (CRG)

Cryogenics

Cryogenic system	Where		
Warm compressor	Surface	Area	$700 \mathrm{~m}^{2}$
		20 t	
		Noise insulated	
Surface SD building	Surface	Area	$30 \times 10=300 \mathrm{~m}^{2}$
		Crane	5 t
Cold Compressor	Underground	Solume	$200 \mathrm{~m}^{3}$
		Surface	$0 \mathrm{~m}^{2}$
		Crane	2 t

Remark

The electronics for the magnetic bearings of the cold compressor is radiation sensitive and maximum distance from its control electronics to the compressor is 50 m

COLD POWERING

High

Q1 to D1 (for each IP side)

circuits connected to the DFHX

C.M.	Circuit / magnet	$\begin{aligned} & \text { Op. } \\ & \text { current } \\ & {[\mathrm{kA} \mathrm{~A}]} \end{aligned}$	PC current rating $[\mathrm{kA}]$	N of circuits	N. of 19" racks /PC	Total racks/ Circuit type
Q1-Q3	MQXF	17.5	20	1	10	10
	$\begin{gathered} \hline \text { trim } \\ \text { MQXF Q3 } \\ \hline \end{gathered}$	± 2	± 3.2	1	3	3
Q2A-Q2B	MQXF	17.5	20	1	10	10
	$\begin{array}{c\|} \hline \text { trim } \\ \mathrm{MQXF} \\ \hline \end{array}$	± 0.3	± 0.8	1	0.5	0.5
	MCBXB	± 2.5	± 3.2	4	3	12
CP	MCBXA	± 2.5	± 3.2	2	3	6
	MQSXF	0.182	0.2	1	0.5	0.5
	MCTXF	0.17-0.2	0.2	1	0.5	0.5
	MCTSXF	0.17-0.2	0.2	1	0.5	0.5
	MCDXF	0.193	0.2	1	0.5	0.5
	MCDSXF	0.193	0.2	1	0.5	0.5
	MCOXF	0.17-0.2	0.2	1	0.5	0.5
	MCOSXF	0.17-0.2	0.2	1	0.5	0.5
	MCSXF	0.17-0.2	0.2	1	0.5	0.5
	MCSSXF	0.17-0.2	0.2	1	0.5	0.5
D1	MBXF	11.8	16	1	9	9

JJ

Cold powering Circuits D2 to Q6

D2 to Q6 (for each IP side)

Circuits connected to the DNHM

C.M.	Circuit / magnet	Op. current [kA]	PC current rating [kA]	N. of circuits	$\\| \text { N. of } 19 \%$	Total/ circuit type
D2	MBRD	12.4	16	1	9	9
	MCBRD	± 3	± 4	4	4	16
Q4	MQYY	16.1	20	2	10	20
	MCBYY	± 3	± 4	4	4	16
Q5	MCBY	0.088	± 0.12	6	0.25	1.5
	MQY	4.2	8	2	4	8
Q6	MCBC	0.1	± 0.12	2	0.25	0.5
	MQML	5.39	8	2	4	8

Space needed
Circuits connected to the DFHM

Total racks	79
Installation surface $\left[\mathrm{m}^{2}\right]$	56
Access/manipulation surface $\left[\mathrm{m}^{2}\right]$	60
Linear installation extension $[\mathrm{m}]$	50
Height $[\mathrm{m}]$	2.6
Installation volume $\left[\mathrm{m}^{3}\right]$	145
Cooling water flow rate $[1 / \mathrm{min}]$	400

Cold powering arc
Continuous cryostat presently fed from DFBA
(for each IP side)

Circuits connected to the DFHA				
Magnet	PC current rating [kA]	N. of circuits	N. of 19" racks /PC	Total/ circuit type
MQT	± 0.6	2	0.5	1
MQS	± 0.6	2	0.5	1
MQTL	± 0.6	2	0.5	1
MQT	± 0.6	2	0.5	1
MSS	± 0.6	2	0.5	1
MO	± 0.6	4	0.5	2
MQM	6	4	4	16
MQML	6	4	4	16
D11 T trim	± 0.6	2	0.5	1

Space needed

Circuits connected to the DFHA	
Total racks	38
Installation surface $\left[\mathrm{m}^{2}\right]$	27
Access/manipulation surface $\left[\mathrm{m}^{2}\right]$	29
Linear installation extension $[\mathrm{m}]$	25
Height $[\mathrm{m}]$	2.6
Installation volume $\left[\mathrm{m}^{3}\right]$	68
Cooling water flow rate $[1 / \mathrm{min}]$	NA

Space becoming free in RR by DFHM related PC	
Racks removed	34
Installation surface made available	24
Linear installation extension $[\mathrm{m}]$	22

Spare Power Converters

Q1 to D1 (for each IP side)			
$\begin{array}{c}\text { "DFHX" } \\ \text { N. spare } \\ \text { current } \\ \text { rating } \\ \text { [kA] }\end{array}$			

Circuit

served\end{array}\right)\)| N. of |
| :---: |
| 19" |
| racks |$|$

D2 to Q6 (for each IP side)
"DFHM"

N. spare	PC current rating $[k A]$	N. Circuit served	N. of 19" racks
	20	2	10
1	8	4	3
1	± 4	4	0.5
1	± 0.12	8	0.5

Cont. cryostat (for each IP side)
"DFHA"

N. spare	PC current rating $[k A]$	N. Circuit served	N. of 19ns racks
Total 5 racks			

Q1 to Q6 (for each IP side)

DFHX + DFHM spares

N. spare	PC current rating $[\mathrm{kA}]$	N. Circuit served	N. of 19 " racks
1	20	5	10
1	8	4	3
1	± 4	12	0.5
1	0.4	10	0.5
1	± 0.12	8	0.25

Q1 to Q6 (for each IP side)

DFHX+ DFHM spares

Installation surface $\left[\mathrm{m}^{2}\right]$	10
Access/manipulation surface $\left[\mathrm{m}^{2}\right]$	12
Linear installation extension $[\mathrm{m}]$	9
Height $[\mathrm{m}]$	2.6
Installation volume $\left[\mathrm{m}^{3}\right]$	18
Cooling water flow rate $[1 / \mathrm{min}]$	100

Quench detection, Q.H. powering

Q1 to D1 (for each IP side)

circuits connected to the DFHX				
C.M.	Circuit	DOS	Q.H.	Total racks
Q1-Q3	MQXF	1	2	1.5
	trim MQXF Q3	1	NA	0.5
	MQXF	1	2	1.5
	trim MQXF Q2	1	NA	0.5
	MCBXB	4	Not def	2
	MCBXA	2	1	1.5
	MQSXF	1	0	0.5
MCTXF	1	0	0.5	
MCTSXF	1	0	0.5	
MCDXF	1	0	0.5	
MCDSXF	1	0	0.5	
MCOXF	1	0	0.5	
D1	MCOSXF	1	0	0.5
MCSXF	1	0	0.5	
MCSSXF	1	0	0.5	
MBXF	1	1	0.5	

D2 to Q6 (for each IP side)

Circuits connected to the DFHM				
C.M.	Magnet	DQS	Q.F.	Total racks
D2	MBRD	1	1	1
	MCBRD	4	Not def	2
Q4	MQYY	2	1	1.5
	MCBYY	4	Not def	2
Q5	MCBY	6	0	3
	MQY	2	1	1
Q6	MCBC	2	0	1
	MQML	2	1	1

Space needed SC link included

	DFHX related	DFHM related
Total racks	14	14
Installation surface $\left[\mathrm{m}^{2}\right]$	9	9
Access/manipulation surface $\left[\mathrm{m}^{2}\right]$	11	11
Linear installation extension $[\mathrm{m}]$	9	9
Height $[\mathrm{m}]$	1.8	1.8
Installation volume $\left[\mathrm{m}^{3}\right]$	25	25

Suenchextaction

Quench extraction system main equipment modules

Equipment	Dimensions [m]	remark
Energy extraction switch	$2 \times 2 \times 2[\mathrm{~L} \times \mathrm{W} \times \mathrm{H}]$	Solid state based switches best guess for dimension 20 kA
Dump resistor	$1 \times 1 \times 1[\mathrm{~L} \times \mathrm{W} \times \mathrm{H}]$	Cooled dump resistor with water to coolant heat exchanger. Best guess dimension for 10 MJ

Quench extraction number and volume approximation

Equipment	No of units	Volume best guess on the base of energies and current
Energy extraction switch	5	$2 \times[2 \times 2 \times 2]+3 \times[2 \times 2 \times 1]$
Dump resistor	7	$4 \times[1 \times 1 \times 1]+3 \times[0.5 \times 0.5 \times 0.5]$

Quench extraction $1^{\text {st }}$ guess installation surface and volume

Equipment	Surface including access $\left[\mathrm{m}^{2}\right]$	Volume $\left[\mathrm{m}^{3}\right]$
Energy extraction switch	42	30
Dump resistor	20	5

$$
\oiiint H L-L H C
$$

Cold Powering volume and surface total needs

High
Luminosity LHC

Q1 to D1 (for each IP side) including DFHX and DFHM

	Q1 to D1	D2 to Q6	Spare PC Q1 to O6	QDS	QPE	total
Installation surface $\left[\mathrm{m}^{2}\right]$	52	68	10	18	25	173
Access $/$ manipulation surface $\left[\mathrm{m}^{2}\right]$	56	73	12	22	37	200
Linear installation extension $[\mathrm{m}]$	46	61	9	18	14	148
Installation volume $\left[\mathrm{m}^{3}\right]$	120	164	18	50	35	387
Cooling water flow rate $[1 / \mathrm{min}]$	305	400	100	NA	NA	810

DFH (X M A)

Length [m]	11
Width $[\mathrm{m}]$	0.95
Height $[\mathrm{m}]$	1800
Installation surface $\left[\mathrm{m}^{2}\right]$	11
Access surface $\left[\mathrm{m}^{2}\right]$	13
Installation volume $\left[\mathrm{m}^{3}\right]$	19

Arc including DFHA

Installation surface $\left[\mathrm{m}^{2}\right]$	37
Access/manipulation surface $\left[\mathrm{m}^{2}\right]$	41
Linear installation extension $[\mathrm{m}]$	35
Installation volume $\left[\mathrm{m}^{3}\right]$	86

Summary per IP

Maximum in surface

	Crab cavities	Cryogenics	Cold Powering	Total
Installation area on surface	$2 \times 172 \mathrm{~m}^{2}+8 \mathrm{~m}^{2}$	$1000 \mathrm{~m}^{2}$	$2 \times 450 \mathrm{~m}^{2}$	$2244 \mathrm{~m}^{2}$
Installation area underground		$150 \mathrm{~m}^{2}$		$150 \mathrm{~m}^{2}$

Maximum in tunnel

	Crab cavities	Cryogenics	Cold Powering	Total
Installation area on surface	$2 \times 65 \mathrm{~m}^{2}$	$1000 \mathrm{~m}^{2}$		$1130 \mathrm{~m}^{2}$
Installation area underground	$2 \times 107 \mathrm{~m}^{2}+8 \mathrm{~m}^{2}$	$150 \mathrm{~m}^{2}$	$2 \times 450 \mathrm{~m}^{2}$	$1280 \mathrm{~m}^{2}$

DFHA in RR

	Crab cavities	Cryogenics	Cold Powering	Total
Installation area on surface	$2 \times 172 \mathrm{~m}^{2}+8 \mathrm{~m}^{2}$	$1000 \mathrm{~m}^{2}$	$2 \times 372 \mathrm{~m}^{2}$	$2096 \mathrm{~m}^{2}$
Installation area underground		$150 \mathrm{~m}^{2}$	$2 \times 88 \mathrm{~m}^{2}(\mathrm{RR})$	$150+176 \mathrm{~m}^{2}$

DFHA + QDS in RR

	Crab cavities	Cryogenics	Cold Powering	Total
Installation area on surface	$2 \times 172 \mathrm{~m}^{2}+8 \mathrm{~m}^{2}$	$1000 \mathrm{~m}^{2}$	$2 \times 332 \mathrm{~m}^{2}$	$2016 \mathrm{~m}^{2}$
Installation area underground		$150 \mathrm{~m}^{2}$	$2 \times 128 \mathrm{~m}^{2}(\mathrm{RR})$	$150+256 \mathrm{~m}^{2}$

Option B2: short service tunnel

(w) $\oiint H L-L H C$

Option comparisons

High
Luminosity
LHC

		Option A1 CP: service tunnel RF: service tunnel New pit	Option A2 CP: surface RF: service tunnel New pit	Option B1 CP: surface RF: surface New pit	Option B2 CP: surface RF: surface Extension	Option B1 CP: surface RF: surface New pit	Option B2 CP: surface RF: surface Extension
		SC link to the DFHA				No SC link to the DFHA	
S	Central building CRY	$1000 \mathrm{~m}^{2}$	$\begin{gathered} 1000+900 \mathrm{~m}^{2} \\ 1900 \mathrm{~m}^{2} \end{gathered}$	$\begin{gathered} 1000+900+8 \mathrm{~m}^{2} \\ 1908 \mathrm{~m}^{2} \end{gathered}$	$\begin{gathered} 1000+900+8 \mathrm{~m}^{2} \\ 1908 \mathrm{~m}^{2} \end{gathered}$	$\begin{gathered} 1000+644+8 \mathrm{~m}^{2} \\ 1652 \mathrm{~m}^{2} \end{gathered}$	$\begin{gathered} 1000+280+8 \mathrm{~m}^{2} \\ 1288 \mathrm{~m}^{2} \end{gathered}$
		Cryo	$\begin{aligned} & \text { Cryo + CP } \\ & (\mathrm{X}+\mathrm{M}+\mathrm{A}) \end{aligned}$	$\begin{gathered} \text { Cryo + CP } \\ (\mathrm{X}+\mathrm{M}+\mathrm{A}) \\ +\mathrm{LLRF} \end{gathered}$	$\begin{gathered} \text { Cryo + CP } \\ (\mathrm{X}+\mathrm{M}+\mathrm{A}) \\ +\mathrm{LLRF} \end{gathered}$	$\begin{gathered} \text { Cryo + CP } \\ (\mathrm{X}+\mathrm{M}) \\ +\mathrm{LLRF} \end{gathered}$	$\begin{gathered} \text { Cryo }+\mathrm{CP}(\mathrm{X}+\mathrm{M}) \\ +\mathrm{LLRF} \end{gathered}$
S	Crab buildings CL and CR			$175 m^{2}+175 m^{2}$	$175 m^{2}+175 m^{2}$	$175 m^{2}+175 m^{2}$	$175 m^{2}+175 m^{2}$
U					$150 \mathrm{~m}^{2}$		$150 \mathrm{~m}^{2}$
	Extension				plus connection to LHC machine		plus connection to LHC machine
U	RR					$\underline{2 \times 128 \mathrm{~m}^{2}}$	$\underline{2 \times 128 \mathrm{~m}^{2}}$
U	Service Tunnel	$\begin{gathered} 2 \times(175+ \\ 450)+8+150 \\ \mathrm{~m}^{2} \\ \mathbf{2 \times 6 2 5 + 1 5 0} \mathrm{~m}^{2} \end{gathered}$	$\begin{aligned} & 2 \times(175)+8+ \\ & 150 \mathrm{~m}^{2} \\ & \mathbf{2 \times 1 7 5 + 1 5 0} \mathrm{~m}^{2} \end{aligned}$	$150 \mathrm{~m}^{2}$		$150 \mathrm{~m}^{2}$	
		$\begin{aligned} & \text { RF+CP+LLRF+ } \\ & \text { Cbox } \end{aligned}$	$\begin{gathered} \mathrm{RF}+\mathrm{LLRF}+ \\ \quad \text { Cbox } \end{gathered}$	Cbox		Cbox	
\mathbf{U}	Vertical	New PIT	New PIT	New PIT	PM54	New PIT	PM54

Option comparisons I

Option A1
CP: service tunnel
RF: service tunnel New pit

Option A2
CP: surface
RF: service tunnel New pit

Option B1
CP: surface
RF: surface
New pit

Option B2
CP: surface
RF: surface Extension

Option B1
CP: surface RF:
surface
New pit

High
Luminosity ur Option B2
CP: surface RF: surface Extension

	SC link to the DFHA				No SC link to the DFHA	
Access Crab	-	-	$+$	+	$+$	+
Access PC	-	+	+	$+$	+	+
Access QDS	-	+	$+$	+	+	+
Access QEE	-	+	$+$	+	$+$	+
Radio shielding PC	+	+	++	++	$+$	+
Radio shielding	+	+	+	+	$+$	+
Civil work impact on planning	Limited Connection to machine tunnel	Limited Connection to machine tunnel	Limited Crab connection	Important Common pit use	$\begin{aligned} & \text { Limited } \\ & \text { Crab connection } \end{aligned}$	Important Common pit use
Tunnel installation complexity	Very high	High	Mild	Mild	Easiest	Easy
Integration complexity	Difficult Cryo to SC link	$\begin{gathered} \text { Difficult } \\ \text { Cryo to SC link } \end{gathered}$	Mild	Mild	$\begin{gathered} \text { Easiest } \\ \text { No SC link to DFBA } \end{gathered}$	Easy No SC link to DFBA
Equipment simplification	$\begin{gathered} \text { Very high } \\ \text { (only hor. SC } \\ \text { link) } \end{gathered}$	None	None	None	4 SC link less probably the most complex to install and integrate no modif. of	4 SC link less probably the most complex to install and integrate no modif. of DFBA

Option comparisons II

	Option A1 CP: service tunnel RF: service tunnel New pit	Option A2 CP: surface RF: service tunnel New pit	Option B1 CP: surface RF: surface New pit	Option B2 CP: surface RF: surface Extension	Option B1 CP: surface RF: surface New pit	Option B2 CP: surface RF: surface Extension
	SC link to the DFHA				No SC link to the DFHA	
Extension of underground civil work	$1+$	+1+	++	+	++	+
Service underground installation	H	+4	++	++	+	+

