

Single Aperture Orbit Corrector: Progress on MCBXFB design

4th Joint HiLumi LHC-LARP Annual Meeting

November, 19th 2014

Index

- Magnet and cable specifications.
- Magnetic design.
- Protection.
- Mechanical design.
- Conclusions.

Magnet and cable specifications

MCBXFB Requirements

MCBXFB requirements	
Magnet configuration	Combined dipole (Operation in X-Y square)
Minimum free aperture	150 mm
Integrated field	2.5 Tm
Baseline field for each dipole	2.1 T
Magnetic length	1.2 m
Working temperature	1.9 K
Nominal current	<2500 A
Field quality (without iron saturation effect)	<10 units (1e-4)
Iron geometry	MQXF iron holes

Strand & Rutherford Cable

Strand parameters		
Cu:Sc	1.75	-
Strand diameter	0.48	mm
Metal section	0.181	mm ²
Nº of filaments	2300	-
Filament diam.	6.0	μm
I(5T,4.2K)	200-210* (prev. 203)	Α
Jc	2800-3300* (prev. 3085)	A/mm ²

^{*} Extracted from strand March-14 (Data provided by Luc-Rene Oberli)

Cable Parameters		
No of strands	18	-
Metal area	3.257	mm ²
Cable thickness	0.845	mm
Cable width	4.370	mm
Cable area	3.692	mm ²
Metal fraction	0.882	-
Key-stone angle	0.67	deg
Inner Thickness	0.819	mm
Outer Thickness	0.870	mm

Insulation

- ▶ 1st option: Fibre glass sleeve
 - Easier assembly
 - Need validation test of a suitable binder: PVA under study because ceramic binder failed at the tests carried out.
- ▶ 2nd option: Polyimide tape
 - Better cooling.
 - Difficult assembly.

Magnetic Design

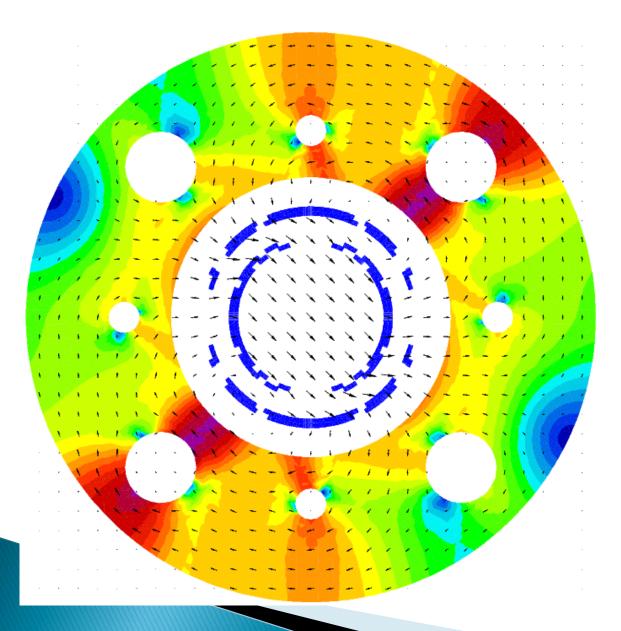
Magnet configuration

Cosine theta:

- Winding and assembly procedures are well-known.
- Long coil ends (similar to the aperture diameter).
- High number of turns (large aperture and small cable).

Superferric:

- Field quality is not achievable within the available space (iron saturation and large aperture).
- Very simple configuration.


Canted cosine theta:

- Lack of experience in case of high fields.
- Magnet protection in case of quench.
- Large radial forces (same as cosine theta case).
- Azimuthal forces support and good field quality.

Single layer & Double layer designs VS old MCBX (same central field comparison)

Inner coil (ID) & Outer Coil (OD) parameters	Units	Single layer design	Double Layer design (Small Collars)	Double Layer design (Large Collars)	Old MCBX (Series Model, both coils powered)
Nominal field 100% (ID)	T	2.13	2.13	2.13	2.13
Nominal field 100% (OD)	Т	2.11	2.12	2.12	2.12
Nominal current (ID)	А	2450	1250	1560	362.5x8= <mark>2900</mark>
Nominal current (OD)	А	2150	1036	1340	331.25x8= <mark>2650</mark>
Coil peak field	T	4.27	3.95	3.93	3.817
Working point	%	60%	44.7%	48.1%	39.54%
Torque	10 ⁵ Nm/m	0.92	0.98	1.19	-0.455
Conductors height (h)	mm	4.37	2×4.37	2x4.37	13.2 (8)
Mean stress at the coil and collar nose interface	MPa	135	70	82	38
Aperture (ID)	mm	Ø150	Ø150	Ø156,2	Ø90
Aperture (OD)	mm	Ø180	Ø200	Ø218	Ø116.8
Iron yoke Inner Diam.	mm	Ø230	Ø250	Ø300	Ø180
Iron yoke Outer Diam.	mm	Ø540	Ø540	Ø610	Ø330
Number of conductors used (1st quad)	-	162	357	324	800

Current Magnetic Design

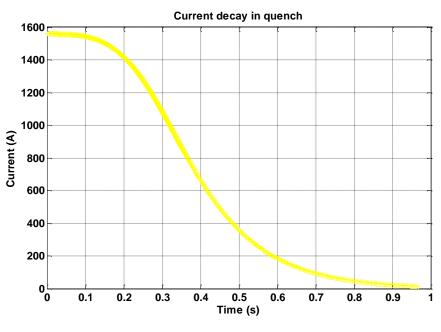
Larger collars in order to increase the stiffness of the assembly and make them self-supporting.

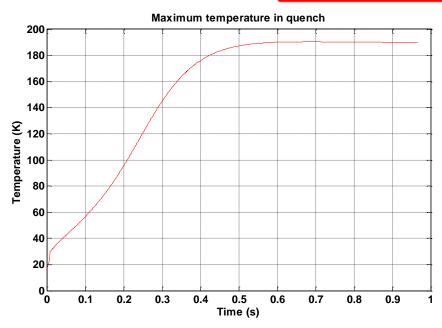
Saturation at nominal current for both dipoles causes the increasing of sextupoles:

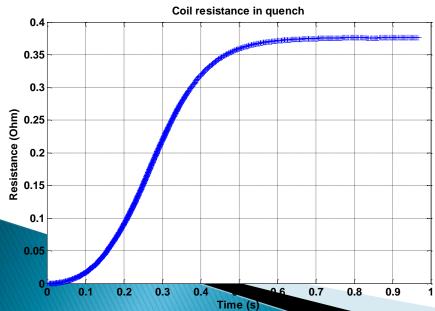
- ∆b3= 37 units
- ∆a3= 24 units

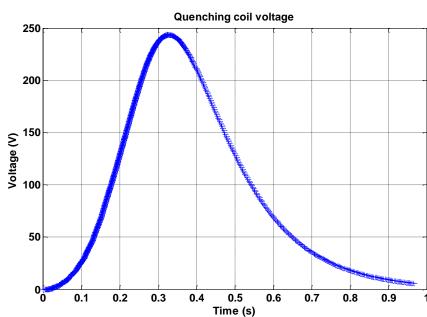
Possible options?

- Offsetting the zero at higher current for partial compensation.
- Iron geometry changes effectiveness to be studied.

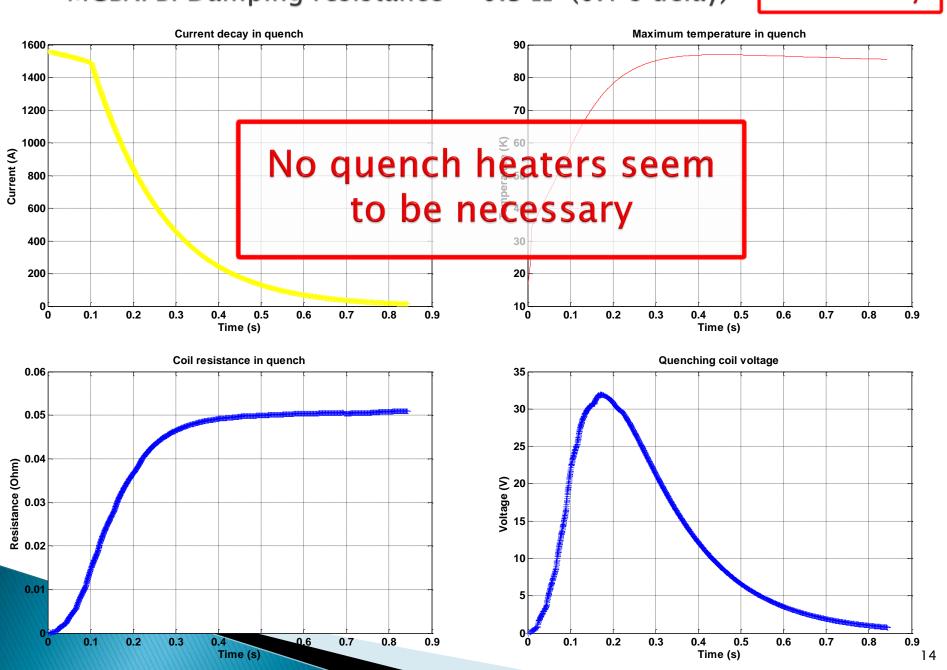

Protection


CIEMAT in-house developed code based on finite difference method: Optimistic assumptions of the model


- Rutherford cable is modeled as a monolithic wire with the same metallic area, discarding the voids or internal volumes filled with resin.
- The wedges are not modeled.
- Quench origin is placed at the innermost turn, although it is not where the peak field is placed when both coils are powered.
- A uniform magnetic field is assumed in the wires, equal to the peak field.


MCBXFB: No damping resistance included

Preliminary

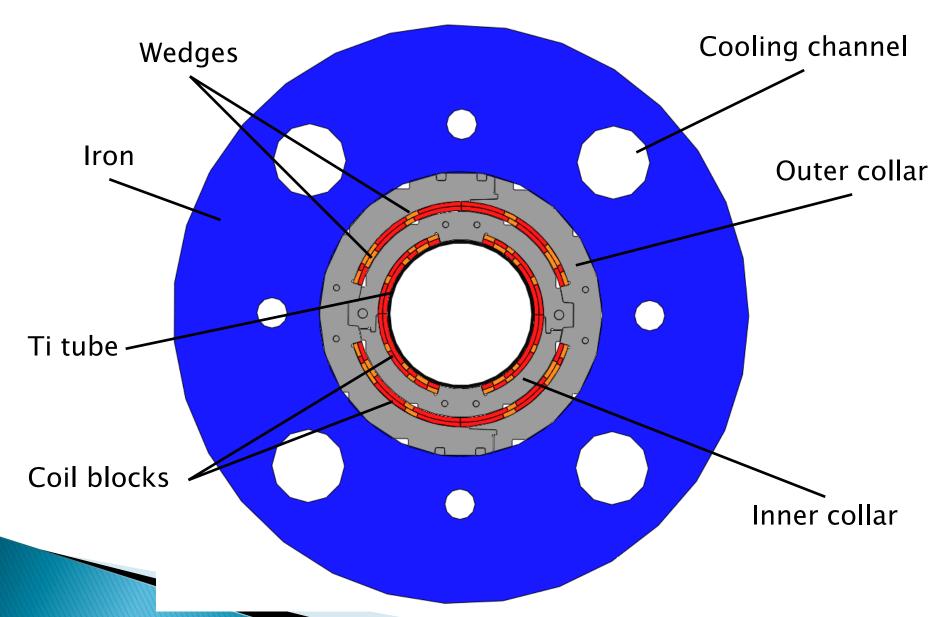


MCBXFB: Damping resistance = 0.3Ω (0.1 s delay)

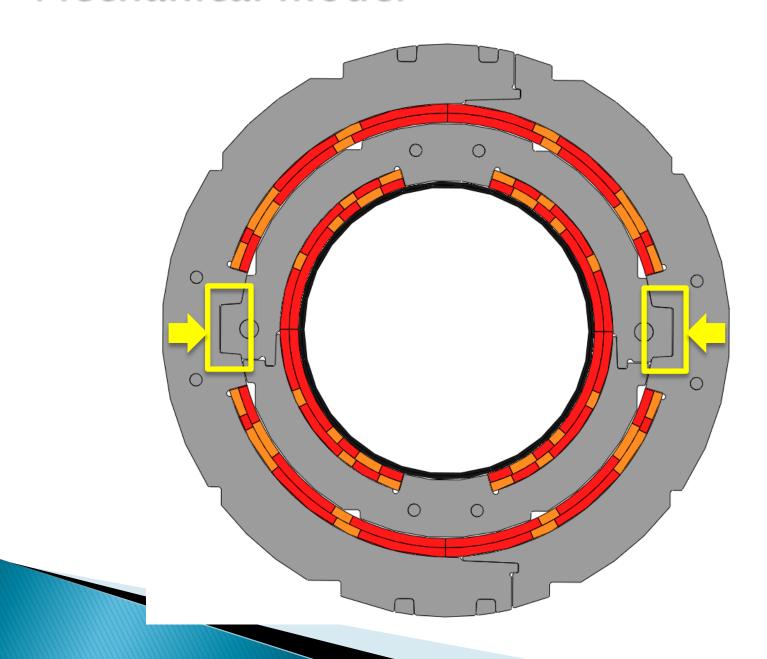
Mechanical Design

Mechanical design: Challenges to face

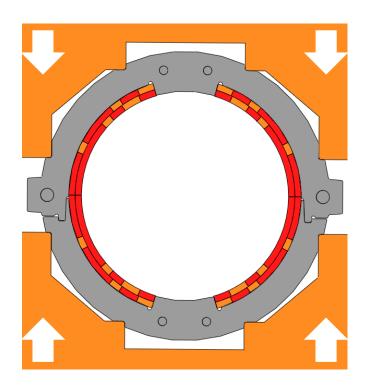
- As a combined dipole that requires a square range of operation in X and Y axis, a large torque arises when both coils are powered.
- Due to the expected radiation dose a solution based on mechanical clamping is required to mechanically fix the coils and guarantee the magnet performance.
- Other major challenges:

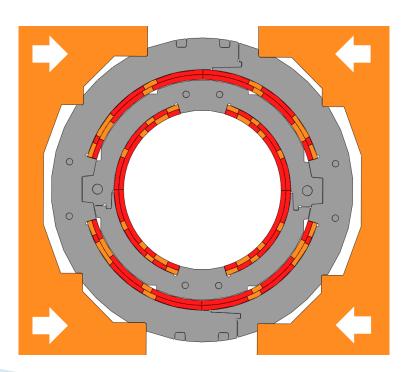

Challenge	Solution proposed
Large radial deformations of the assembly	Large self-supporting collars
Large azimuthal displacements of the coils	Azimuthal interference at collar noses
Radial inward forces at the inner dipole	Inner titanium tube

Mechanical model

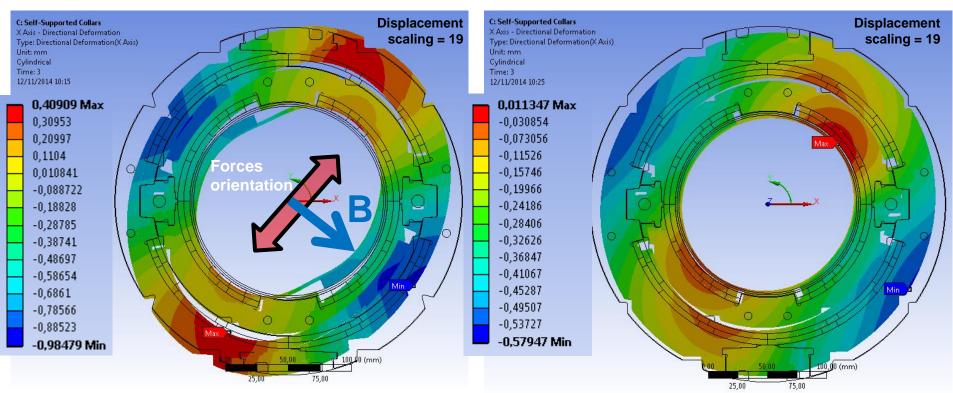

- Powered with 108% of nominal current for sizing purposes.
- Material properties used:

	Material	E [Gpa]	u [-]	CTE [K-1]
Coils & spacers (Impregnated)	NbTi+Cu	40	0,0032	1.1*10 ⁻⁵
Collars	StainlessSteel	193 _{293K} /210 _{4.3K}	0,0028	0.983*10 ⁻⁵
Inner tube	Ti	130	0,0017	0.603*10-5


Mechanical model


Mechanical model

Mechanical assembly


- Challenging nested assembly due to the inner dipole deformation after collaring.
- Other solutions under evaluation.

Results: Large radial collar deformations

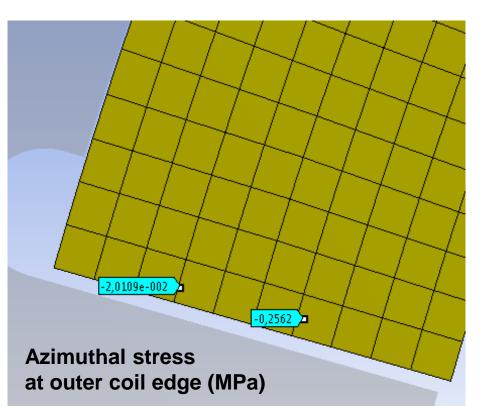
Outer Collar Diam.= 275 mm

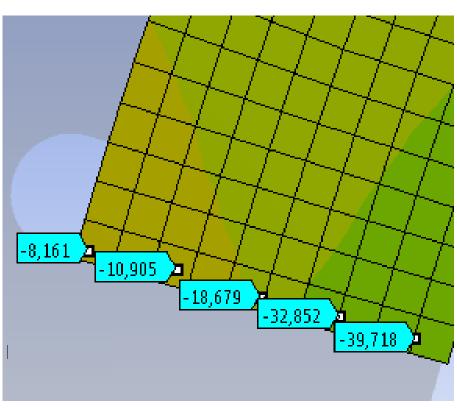
Outer Collar Diam. = 300 mm

Ellipticity ≅ 1.4 mm

VS

Ellipticity ≈ 0.6 mm

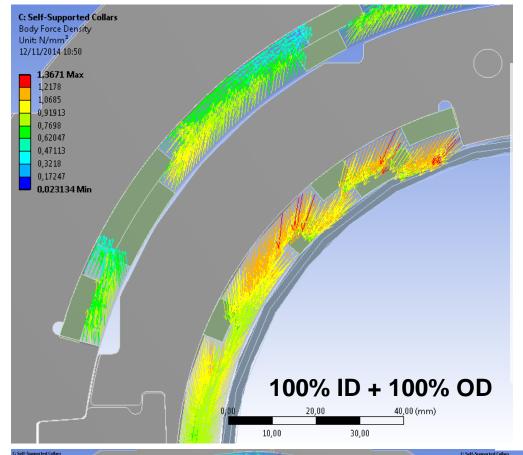

Currently evaluating if iron support is needed


Field quality effect (Ansys2Roxie):

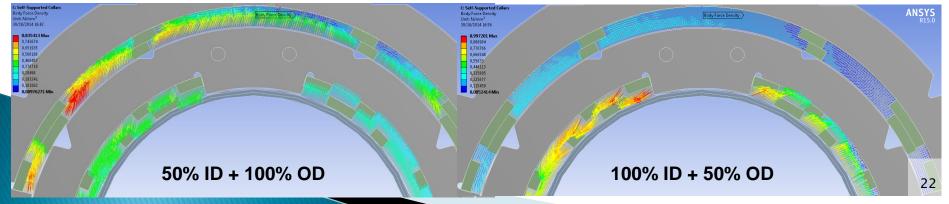
- △b3= 9 units
- \triangle a3= 6 units

Results: Large azimuthal coil displacements

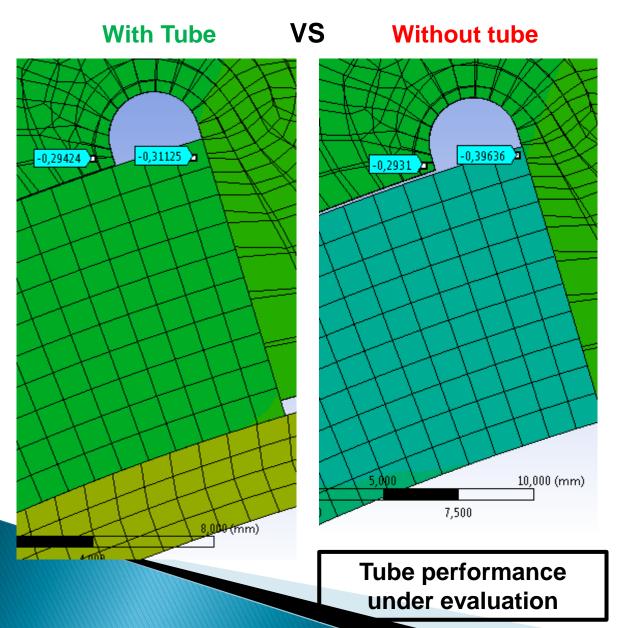
Outer Collar Diam.= 275 mm Interference = 0.2 mm Outer Collar Diam.= 300 mm Interference = 0.2 mm



The coils separates from the collar


VS The coils stay attached to the collars

Azimuthal interference value to be further evaluated


Results: Radial Inward Forces at Inner Dipole

- Due to the combined dipole configuration, radial inward forces appear in the inner coil (upper blocks), causing the coils to deform into the aperture.
- Checking other possible powering scenarios, forces at outer dipole are always outwards.
- An inner titanium tube was proposed given its low contraction factor.

Results: Radial Inward Forces at Inner Dipole

Outer Collar Diam.= 300 mm Interference= 0.2 mm **Frictionless contact** between coil and collar nose

- The inclusion of the titanium tube helps to decrease the inward displacement of the inner dipole coil from 0,1 mm to less than 0,02 mm.
- It is intended to prevent a sudden slipping movement of the coil under Lorentz forces, because some friction is always present.
- Even such a small movement, if sudden, might likely trigger a quench.
- This frictionless case illustrate the worst scenario possible. If the movement were continuous, no pipe would be necessary.

Conclusions

Conclusions (I)

Magnetic Design:

- Single layer and double designs were studied. Double layer design showed as the most suitable option to meet the requirements.
- To Be Done:
 - Deal with sextupoles appeared due to iron saturation.
 - Persistent current and magnetization effect to be studied.

Protection

- Preliminary results suggest that a dump resistor would be enough to manage quench at both MCBXF models.
- To be done: Refine the model.

Conclusions (II)

Mechanical design:

- The challenges faced at this magnet were radial inwards forces at the inner dipole, large azimuthal coil displacements and large radial deformations of the assembly.
- A solution based on self supporting collars and an inner titanium tube has been proposed and is currently being assessed.
- To be done: Evaluate if iron support is needed, inner titanium tube performance and azimuthal interference value.

Manufacturing techniques

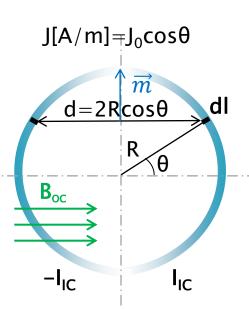
- To be done:
 - The coils will be fully impregnated coils but a compatible binder is still needed (PVA under study).
 - Challenging assembly of nested collars. Short model needed to validate the method.

Next year activities

- March 2015: Finish magnetic and mechanical detailed design.
- October 2015: First Coil fabrication.
- December 2015: Short mechanical model.

Thanks for your attention

Annexes

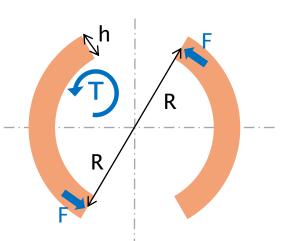

Considerations on a MCBXFB design based on a canted cosinetheta coil configuration

- Comparing the main challenges in the case of MCBXFB design for both designs:
 - The torque between nested dipoles:
 - It will be the same for both designs.
 - The separation of the pole turn from the collar nose due to the Lorentz forces:
 - It does not happen in the CCT dipole (azimuthal forces support).
 - In the pure cosine-theta it can be overcome with a small interference between the collar nose and the pole turn of the coil.
 - The elliptical deformation of the support structure under Lorentz forces:
 - In a CCT dipole the outer formers should hold the outwards radial forces coming from the inner layers, which complicates significantly the assembly and fabrication.
 - The assembly of two nested collared coils is not easy, but seems more affordable.
- The CCT configuration has not been broadly used up to now, so other open questions are:
 - The handling of the axial repulsive forces between layers.
 - The influence of the cable positioning accuracy on the field quality.
 - The training of a large and high field superconducting dipole.
 - The protection of the magnet in case of quench.
 - Formers materials to be used (insulation, stiffness and easily machining required).
 - Coils impregnation.

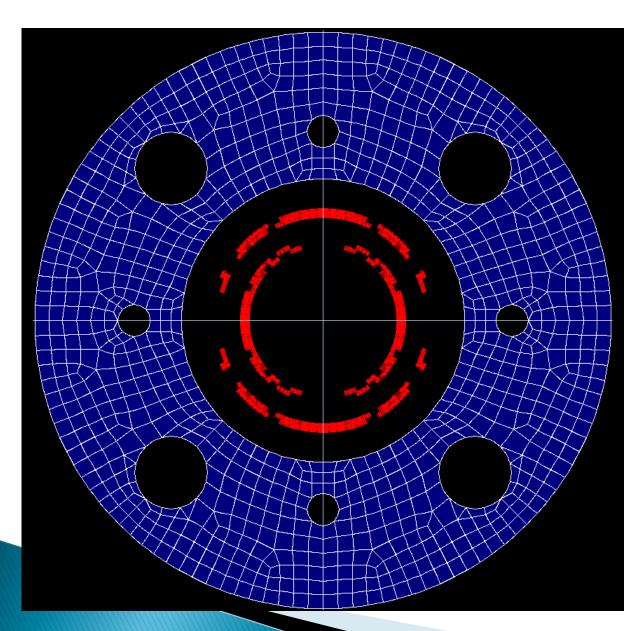
Single layer & Double layer designs VS old MCBX (same central field comparison)

Inner coil (ID) & Outer Coil (OD) parameters	Units	Single layer design	Double Layer design (Small Collars)	Double Layer design (Large Collars)	Old MCBX (Series Model, both coils powered)
Nominal field 100% (ID)	Т	2.13	2.13	2.13	2.13
Nominal field 10% (ID)	Т	0.214	0.214	0.218	0.2156
Non-linearity (ID) [B _{100%} -10·B _{10%}]/10·B _{10%} ·100]	%	-0.47%	-0.61%	-2.29%	-1.2%
Nominal field 100% (OD)	Т	2.11	2.12	2.12	2.12
Nominal field 10% (OD)	Т	0.212	0.2154	0.219	0.2156
Non-linearity () [B _{100%} -10·B _{10%}]/10·B _{10%} ·100]	%	-0.47%	-1.58%	-3.2%	-1.67%
Nominal current (ID)	Α	2450	1250	1560	362.5x8= <mark>2900</mark>
Nominal current (OD)	А	2150	1036	1340	331.25x8= <mark>2650</mark>
Coil peak field	Т	4.27	3.95	3.93	3.817
Working point	%	60%	44.7%	48.1%	39.54%
Torque using Roxie Forces	10 ⁵ Nm/m	0.92	0.98	1.19	-0.455
Torque using Analytical Equation	10 ⁵ Nm/m	0.93	1.03	1.13	0.45
Difference Roxie vs Analytical Eq.	%	+1.68%	+4.13%	-4.72%	-1.1%
Conductors height (h)	mm	4.37	2x4.37	2x4.37	13.2 (8)
Mean radius (ID)	m	0.0775	0.08	0.0825	0.0518
Mean stress at the coil and collar nose interface	MPa	135	70	82	38
Aperture (ID)	mm	Ø150	Ø150	Ø156,2	Ø90
Aperture (OD)	mm	Ø180	Ø200	Ø218	Ø116.8
Iron yoke Inner Diam.	mm	Ø230	Ø250	Ø300	Ø180
Iron yoke Outer Diam.	mm	Ø540	Ø540	Ø610	Ø330
Number of conductors used (1st quad)	-	162	357	324	800

Some useful expressions to understand where mechanical stresses come from


$$I_T = \int_{-\pi/2}^{\pi/2} J dl = \int_{-\pi/2}^{\pi/2} J_0 \cos \theta \, R d\theta = 2J_0 R \implies J_0 = \frac{I_{IC}}{2R}$$

$$\frac{T}{l} = \frac{\vec{m} \times \vec{B}}{l} = \frac{B_{OC}}{l} \int_{-\pi/2}^{\pi/2} S \cdot I = B_{OC} \int_{-\pi/2}^{\pi/2} 2R_{IC} \cos \theta J_0 \cos \theta R_{IC} d\theta$$


$$T/l = \frac{\mu_0 \pi}{8} I_{IC} I_{OC} \frac{R_{IC}}{R_{OC}} \left(\frac{R_Y^2 + R_{OC}^2}{R_Y^2} \right) \longleftarrow T/l = \frac{\pi}{2} R_{IC} B_{OC} I_{IC}$$

* Linear Iron

$$\sigma_{\theta_{cond}} = \frac{F}{A} = \frac{T/2R}{lh} = \frac{T/l}{2Rh}$$

Current Magnetic Design

Considerations used due to...

Mechanical analysis

- Thicker collars.
- Larger aperture.
- Larger main posts.

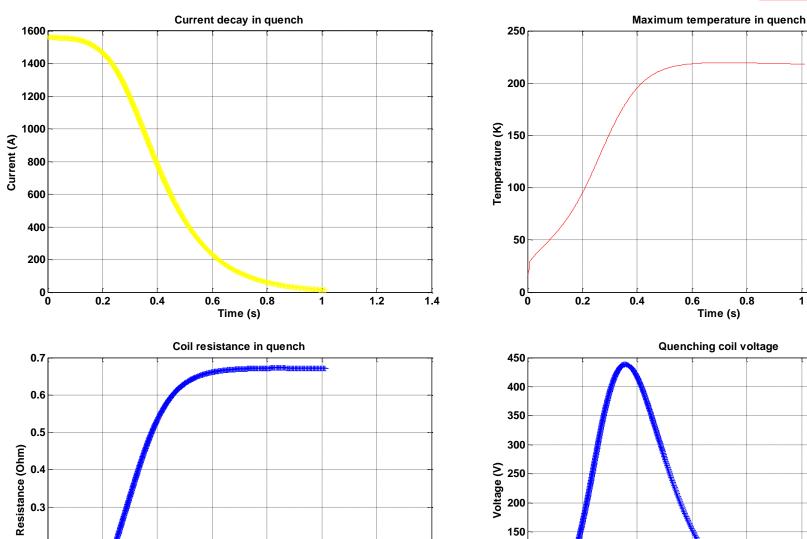
Manufacturing

- Less than 55 conductors per block.
- Iron rod holes.

Geometry

Material contraction.

Insulation


- Insulation layer at the midplane.
- New insulation thickness.

Integration

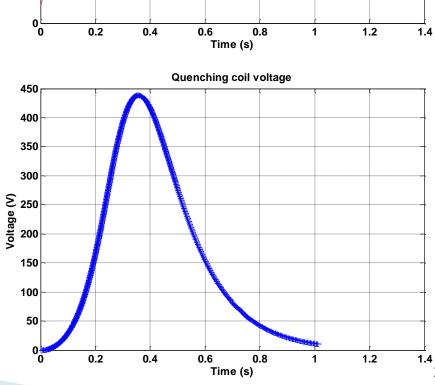
MQXF holes and outer diameter

MCBXFA: No damping resistance included

Preliminary

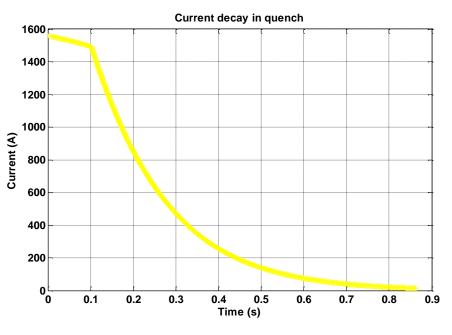
1.2

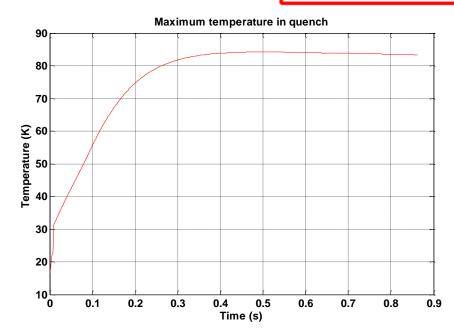
1.4

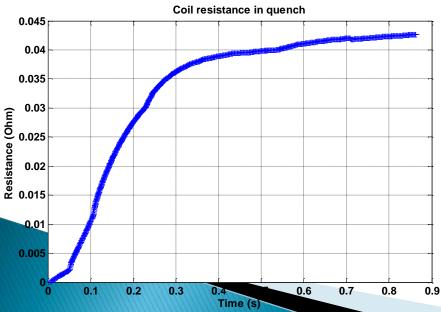

0.2

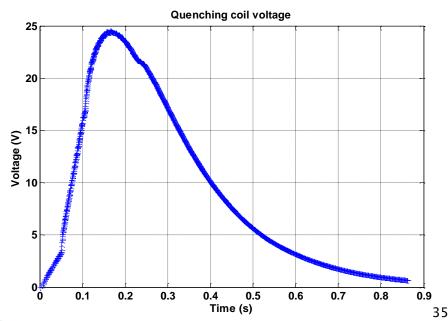
0.1

0.2


0.4

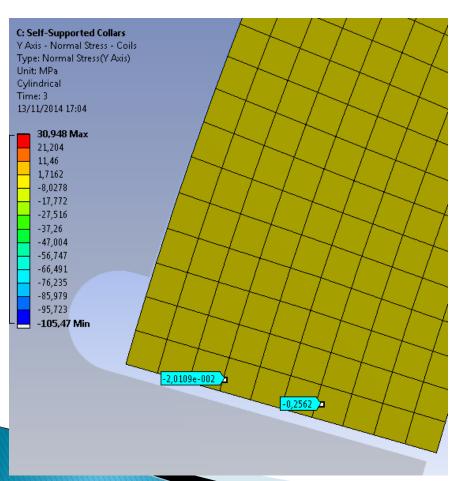

Time (s)

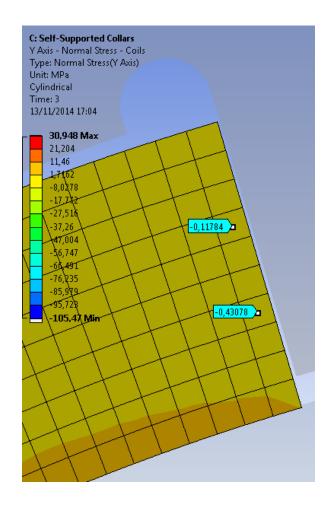



MCBXFA: Damping resistance = 0.3Ω (0.1 s delay)

Preliminary

Model settings and convergence challenges

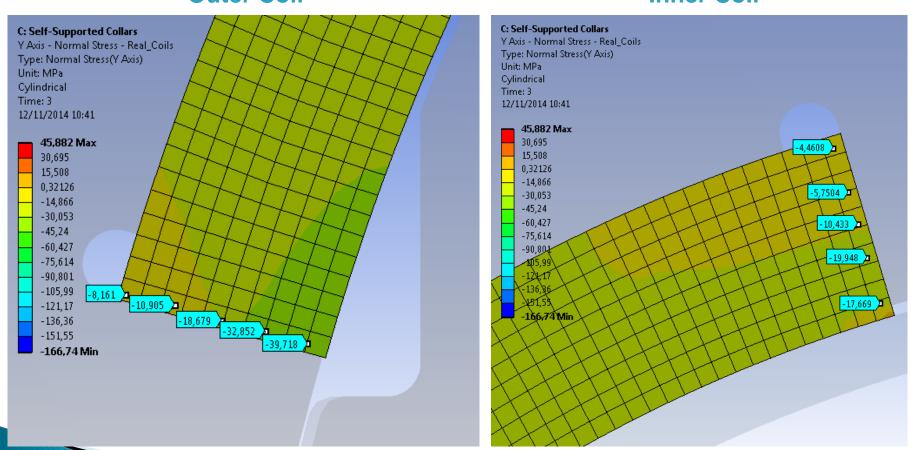

- 2D Ansys Workbench model.
 - 0.5-mm-thick shell elements at the collars.
 - 1-mm-thick shell elements for the rest of the assembly.
- Load steps.
 - \downarrow t=0-1: Contact offset (pre-stress).
 - \downarrow t=1-2: Assembly cooldown.
 - \rightarrow t=2-3: EM forces (exported from Maxwell, 108% Nominal current).
- Convergence/stability challenges
 - No symmetry boundary conditions can be used. DOF more difficult to constrain.
 - Many parts involved and linked by contact. Frictional contacts showed better performance that frictionless ones.
 - Techniques used to achieve convergence:
 - Adding extra boundary conditions.
 - Tuning up contact settings at problematic zones (Stabilization dumping factor, Normal stiffness, ramped effects...).

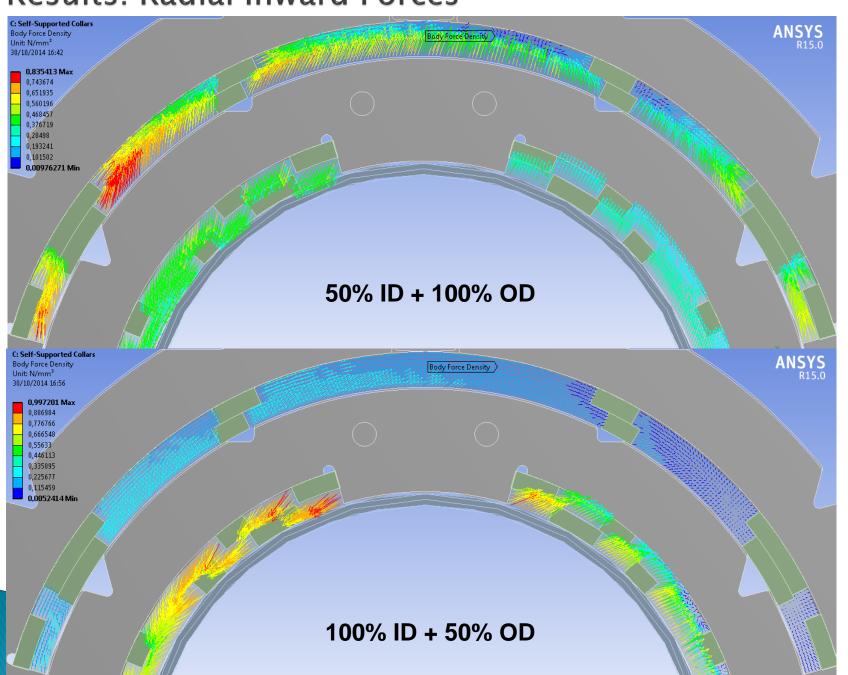

Results: Large azimuthal coil displacements Outer Collar Diam. = 275 mm, Interference = 0.2 mm

Azimuthal stress

Outer Coil

Inner Coil




Results: Large azimuthal coil displacements Outer Collar Diam.= 300 mm, Interference= 0.2 mm

Azimuthal stress

Results: Radial Inward Forces

Materials

- Cable, wedges and inter-layer insulation: glass fibre sleeve impregnated with binder treatment as hardener (PVA to be studied).
- Wedges: machined from ETP copper.
- End spacers: 3D printed in stainless steel.
- Ground insulation: Polyimide sheets
- Vacuum impregnated coils, radiation hard resin (cyanate-ester blend).
- Collars: Machined by EDM in stainless steel.
- Iron: To be evaluated.
- Connection plate: Hard radiation resistant composite, like Ultem.
- End plates: Stainless steel.
- Inner pipe: Titanium grade 2 if grade 5 is not available.

Winding

Customized winding machine lent by CERN

- New beam: 2.5 m long.
- Electromagnetic brake.
- Horizontal spool axis.

Winding process

- Stainless steel mandrel protected with a polyimide sheet.
- Binder impregnation and curation.
- Outer layer will be wound on top of the inner one with an intermediate glassfiber sheet for extra protection.
- Vacuum impregnation with hard radiation resin.

Assembly

- Collars placed around the coils with a vertical press (custom tooling required).
- Layer of protection between both dipoles, likely a glass fibre sheet
- Innermost turn of the coils will be protected by a stainless steel sheet from the collar nose sliding.
- Iron laminations around the coil assembly.