HL-LHC

 IR Higher Order Corrector Magnets

 IR Higher Order Corrector Magnets Conceptual Design \& Construction Activity

F. Alessandria, G. Bellomo, F. Broggi, A. Paccalini, D. Pedrini, A.Leone, M. Quadrio, L. Somaschini, M. Sorbi, M. Todero, C. Uva INFN Milano, LASA Lab.
P. Fessia, E. Todesco
CERN
Presented by Giovanni Volpini

KEK, 20 November 2014

outline

1. 2D \& 3D electromagnetic design

2. magnet coupling

3. magnet construction \& technological developments

4. organization, next steps, conclusion

Giovanni Volpini
KEK 20 November 2014

Corrector magnet

The superferric design was chosen for ease of construction, compact shape, modularity, following the good performance of earlier corrector prototype magnets developed by Ciemat (Spain).

Giovanni Volpini
KEK 20 November 2014

LHC vs. HL-LHC corrector magnet comparison chart

LHC

$\begin{aligned} & \frac{1}{⿻} \\ & \stackrel{0}{0} \stackrel{0}{2} \end{aligned}$							$\begin{aligned} & \frac{0}{3} \\ & \frac{5}{0} \\ & \frac{0}{4} \end{aligned}$					
			mm	[J]	[A]	[mH]	[mm]	[kJ]	[A]	[T.m]	[m]	[H]
2 S	MQSX		70	2,116	550	14	150	24.57	182	1.00	0.807	1.247
3 N	MCSX	MCSTX	70	39	100	4.7	150	1.28	132	0.06	0.111	0.118
3 s	MCSSX		70	6	50	7.8	150	1.28	132	0.06	0.111	0.118
4 N	mcox	mcsox	70	16	100	4.4	150	1.41	120	0.04	0.087	0.152
4 S	MCOSX		70	22	100	3.2	150	1.41	120	0.04	0.087	0.152
							150	1.39	139	0.03	0.095	0.107
							150	1.39	139	0.03	0.095	0.107
6 N	MCTX	MCSTX	70	94	80	29.2	150	4.35	167	0.086	0.430	0.229
6 S							150	0.92	163	0.017	0.089	0.052

Giovanni Volpini KEK 20 November 2014

Giovanni Volpini
KEK 20 November 2014

Stray Field

$\left|A_{2}\right| @ r=50 \mathrm{~mm}[T]$

Giovanni Volpini
KEK 20 November 2014

A Comparison of Codes

Luminosity LHC

Use different codes to simulate the same sextupole, to cross-check \& validate the results:

- COMSOL + Mathematica for harmonic analysis
- OPERA (2D and 3D models developed by Alejandro Sanz-UII, CERN-TE-MSC)
- Roxie

2D computations: agreement within few parts/104 on fields; $\sim 1 / 10$ of unit on relevant harmonics.

Harmonics vs. operating current

Operating current [A]
Giovanni Volpini
KEK 20 November 2014

1. 2D \& 3D electromagnetic design

2. magnet coupling

3. magnet construction \& technological developments

4. organization, next steps, conclusion

Giovanni Volpini
KEK 20 November 2014

Coupling: electromagnetic cross-talk and forces acting between adjacent corrector magnets.

A full (2π) model has been developed since in the most general case no symmetry exists. One magnet is powered, with real iron and the second one (coupled) is described through its iron yoke, assuming linear iron. Loose boundary conditions and the «mixture» of different problems (high field, current driven on one side, and «quasi magnetostatic» on the other), led to convergence problem and doubtful solutions.

A simplified model has therefore been introduced, leaving out the iron yoke and considering only the flux return yoke and the bridge of second magnet. This increases the symmetry of the problem (only π / n is now required), reducing computation time/increasing the accuracy, at the price of a somewhat less accurate description of the second magnet.

We have considered two cases: quadrupole and octupole
source magnet: current
yoke+bridge+FRY real iron

coupled magnet:

 no current only FRY + bridge simulated linear iron $\mu_{r}=4000$

Cross-talk in the coupled magnet

The magnetic induction in the FRY of the coupled magnet is mostly concentrated close to the bore, and is extremely small in the

B in the coupled magnet as a function of the separation: octupole

Flux density in the coupled magnet FRY and bridge decreases exponentially with increasing separation between magnets. We can assume that the value in the yoke is even smaller, leading to a negligible excitation of the magnet.

B in the coupled magnet as a function of the separation: quadrupole

Giovanni Volpini
KEK 20 November 2014

Computation of the force between iron yokes turned out to be harder than expected.
Following methods were exploited:
1 Integration of the Maxwell stress tensor (MST) on the surface of an air volume sourrounding the iron. In this case, we are interested in the net (external) force, so we neglected the surface on the $\varrho-z$ planes;
2 An internal feature of COMSOL, which is based also on the Maxwell stress tensor;
3 Virtual work principle.

1 was computed considering a surface in air encompassing the iron of the second magnet;
Despite we do not know precisely how 2 works (COMSOL documentation explains that MST is integrated on the relevant surface, but it is unclear how this is precisely accomplished, since some components of \mathbf{B} and \mathbf{H} are not continuous across the iron surface), the results of 2 agree with 1 to within $\pm 3 \%$. 3 requires in our case knowledge of the energy with ppm (or ppb!) accuracy, which is unrealistic. Still it can be used to set an upper bound on the forces.

Giovanni Volpini

KEK 20 November 2014

Attractive force decreases exponentially, the higher orders the faster.

$$
\begin{aligned}
F(z)=F(0) & e^{-(z / \lambda)} \\
\lambda & \approx 33 \mathrm{~mm} \text { (quadrupole) } \\
\lambda & \approx 20 \mathrm{~mm} \text { (octupole) }
\end{aligned}
$$

If ΔU is an upper bound for the stored energy variation changing the separation by $\Delta z=z_{2}-z_{1}$, an upper bound for the attractive force is given
by

$$
\begin{array}{ll}
\mathrm{F}\left(\mathrm{z}_{1}\right)<\Delta \mathrm{U} / \lambda & ; \quad \lambda<\Delta \mathrm{z} \\
\mathrm{~F}\left(\mathrm{z}_{1}\right)<\Delta \mathrm{U} / \Delta \mathrm{z} & ; \quad \lambda>\Delta \mathrm{z}
\end{array}
$$

1. 2D \& 3D electromagnetic design

2. magnet coupling
3. magnet construction \& technological developments
4. organization, next steps, conclusion

Giovanni Volpini
KEK 20 November 2014

- Small wire (low operating current), but not too small (must be easy to handle, insulation should not reduce too much the J_{e})
- High Cu content (again, low operating current, 4-pole protection)
- Off the shelf product: small amount required (10's of kg)
- Small filament: not a strict requirement, but these magnets are designed to operate in the whole range $0-I_{\max }$

Giovanni Volpini

Bruker-EAS
NbTi for Fusion application Fine filaments ITER PF wire Wire type 2
$\mathrm{Cu}: \mathrm{NbTi} \approx 2.30$
Number of filaments 3282
Filament diameter $\approx 8 \mu \mathrm{~m}$ @ 0.73 mm Two wire diameters: 0.5 and 0.7 mm S2-glass insulation,
$1 \mathbf{k m}$ batch of 0.5 mm delivered Waiting for the delivery of $\mathbf{8 ~ k m}+8 \mathbf{k m}$

Luvata Pori OK3900
$\mathrm{Cu}: \mathrm{NbTi} \approx 2.00$
Number of filaments 3900 wire diameter 0.575 mm Filament diameter $\approx 5.3 \mu \mathrm{~m}$ Bare wire
20 km delivered

KEK 20 November 2014

Yoke laminations machined by laser cut followed by EDM (final accuracy $1 / 100 \mathrm{~mm}$) on the relevant surfaces: poles, coil slots, alignment slots.
5.8 mm thick iron laminations, supplied by CERN

Sextupole preliminary desig

Giovanni Volpini
KEK 20 November 2014

Giovanni Volpini
KEK 20 November 2014

Coil tooling

Insulation scheme:

-wire w/ S2 glass 0.14 mm thick (on dia)
-ground insulation:
G11, 2 mm thick plates on both sides of the coil, include the wire exits

G11 thin, flexible layer on the inner wall of the coil;
S2 tape on the outer wall

Winding machine:

Commercial winding machine;
Home-developed braking system, electrical synchronous motor controlled by a variable frequency inverter regulating the wire tensioning between 1 and 20 kg ;

Giovanni Volpini
KEK 20 November 2014

Test station

The LASA magnet test station will be used for the magnet cold test. An existing cryostat will be used for the test of sextupole to skew dodecapole.

Fast and slow data acquisition are now being adapted for the new test. A new QDS is now being built.

A new cryostat, to be fit inside the exsisting magnet test station at LASA, has been designed to test 4 -pole. This allows to use the exsisting services (current, LHe feed and GHe recovery, signal, etc.)

Giovanni Volpini

1. 2D \& 3D electromagnetic design

2. magnet coupling

3. magnet construction \& technological developments
4. organization, next steps, conclusion

Giovanni Volpini
KEK 20 November 2014

	MAGTX	
WP1	CORRAL	Design, construction and test of the five prototyes of the corrector magnets for the HL interaction regions of HiLUMI
WP2	PADS	2D \& 3D engineering design of the D2 magnets
WP3	SCOW-2G	Development of HTS coil for application to detectors and accelerators
WP4	SAFFO	Low-loss SC development for application to AC magnets

CERN-INFN Collaboration Agreement

Approved by the INFN Board of Directors \& signed by INFN President on June 2014; signed by CERN DG on July 17th.
CERN endorses MAGIX WP1 \& WP2 deliverables and milestones, contributing with 527 kE

MAGIX is a INFN-funded research project, (GrV, «Call») whose goal is to develop superconducting technologies for application to future accelerator magnets.
It includes four WP's, two of which are relevant to HL-LHC 2014-2017, 1 M€ + personnel funds (all WP's)

INFN already involved in FP7HiLumi (UE-HILUMI, GrV) WP2 beam dynamics, LNF WP3 magnets, MI-LASA WP6 cold powering, MI-LASA

Next Steps

Sextupole

Residual magnetization at I=0 and impact on the harmonics \sim Feb 15
Executive design
Jan 15
Sextupole Construction \& test
Cryostat for the sextupole test commissioned
Jan 15
QDS and slow and fast data acquisition adapted
Feb 15
Order to workshop for mechanical components manufacture Feb 15
Sextupole assembled
May 15
Sextupole tested
June 15
Other design
Executive design octupole to dodecapole
Nov 15
MgB_{2} quadrupole design completed.
Dec 15

Conclusion

Conceptual design from quadrupole to dodecapole concluded

Attractive forces between nearby magnets << 1 newton; cross-talk negligible

Executive design of the sextupole started
Superconducting wire delivery to be completed soon
Winding \& impregnation tests in progress

Test preparation in progress, in view of the sextupole test in 2015

thank you for your attention!

KEK 20 November 2014

Spare

Giovanni Volpini

KEK 20 November 2014

Corrector Magnet Summary Table I

High
Luminosity

General

Giovanni Volpini
KEK 20 November 2014

Corrector Magnet Summary Table II

General

$\begin{aligned} & \stackrel{0}{E} \\ & \underset{Z}{0} \end{aligned}$	$\begin{aligned} & \text { 义̀ } \\ & \text { D̀ } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \\ & \frac{5}{3} \end{aligned}$		O－1			$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{D}} \\ & \stackrel{0}{0} \\ & \frac{\pi}{0} \\ & \stackrel{\rightharpoonup}{\bar{D}} \\ & \stackrel{0}{0} \end{aligned}$						
		$$	＇	＜	\vdash	ε		$\stackrel{N}{\underset{E}{E}}$		マ	$\underset{\underset{\sim}{\varepsilon}}{\varepsilon}$	エ	エ
MCQSX	2	57，674	320	182.0	2.97	0.807	25	303.3	303	24.57	30.44	1.247	1.608
MCSX	3	28，193	214	131.6	2.33	0.111	11	353.0	350	1.28	11.61	0.118	0.179
MCSSX	3	28，193	214	131.6	2.33	0.111	11	353.0	350	1.28	11.61	0.118	0.179
MCOX	4	41，396	344	120.4	2.41	0.087	3，688	313.7	320	1.41	16.30	0.152	0.391
MCOSX	4	41，396	344	120.4	2.41	0.087	2，766	313.7	320	1.41	16.30	0.152	0.391
MCDX	5	35，672	256	139.1	2.34	0.095	50，623	359.7	360	1.39	14.69	0.107	0.301
MCDSX	5	35，672	256	139.1	2.34	0.095	50，623	359.7	360	1.39	14.69	0.107	0.301
MCTX	6	25，497	154	166.8	2.04	0.430	640，141	259.4	350	4.35	10.11	0.229	0.600
MCTSX	6	26，984	172	156.9	2.01	0.089	612，604	283.6	350	0.92	10.40	0.052	0.149

Giovanni Volpini

Corrector Magnet Summary Table III

High
Luminosity LHC

General

Geometry details

$\begin{aligned} & \stackrel{0}{E} \\ & \underset{\sim}{0} \end{aligned}$		$\begin{aligned} & \text { n } \\ & \stackrel{N}{2} \\ & 4 \end{aligned}$				\because 				

		¢	$\stackrel{N}{E}$	ε	>	$\underset{\varepsilon}{E}$	\%	E	E	${ }_{\text {E }}$	$\underbrace{}_{\text {E }}$
MCQSX	2	57,674	192	604.5	300	460	1000	840.8	800.8	871.5	890.5
MCSX	3	28,193	79.8	79.4	300	320	80	123.4	94.2	164.9	183.9
MCSSX	3	28,193	79.8	79.4	300	320	80	123.4	94.2	164.9	183.9
MCOX	4	41,396	132	88.1	300	320	70	98.7	70.7	141.3	160.4
MCOSX	4	41,396	132	88.1	300	320	70	98.7	70.7	141.3	160.4
MCDX	5	35,672	99	67.0	300	320	75	107.4	82.4	153.1	172.2
MCDSX	5	35,672	99	67.0	300	320	75	107.4	82.4	153.1	172.2
MCTX	6	25,497	99	144.1	300	320	250	449.0	424.0	494.6	513.7
MCTSX	6	26,984	99	41.5	2nn	320	75	101.5	76.5	147.2	166.3

Giovanni Volpini KEK 20 November 2014

Gene		Protection						Forces							Wire needed	
$\begin{aligned} & \stackrel{0}{E} \\ & \underset{\sim}{\mathbb{Z}} \end{aligned}$	$\begin{aligned} & \frac{1}{\overline{0}} \\ & \frac{1}{0} \end{aligned}$		$\stackrel{\cong}{\stackrel{\Im}{1}}$			$\begin{aligned} & \stackrel{n}{E} \\ & \sum_{\otimes}^{幺} \\ & \vdots \end{aligned}$										
		C	\cdots	1	$\underset{~ N}{\substack{~}}$	$$	1	z	z	z	$\frac{\xi}{\Sigma}$	$\frac{\xi}{\Sigma}$	$\frac{\xi}{\Sigma}$	$\frac{\xi}{\Sigma}$	ξ	E
MCQSX	2	1.648	0.976	110\％	19，549	19，473	100．4\％	41，538	47，777	4，038	51，472	59，203	52，113	58，025	4，508	
MCSX	3	2.279	0.078	110\％	821	5，069	16．2\％	2，915	1，497	630	26，343	13，529				2，383
MCSSX	3	2.279	0.078	110\％	821	5，069	16．2\％	2，915	1，497	630	26，343	13，529				2，383
MCOX	4	2.492	0.157	110\％	1，376	5，069	27．1\％	2，504	2，018	912	28，866	23，260				3，523
MCOSX	4	2.492	0.157	110\％	1，376	5，069	27．1\％	2，504	2，018	912	28，866	23，260				3，523
MCDX	5	2.157	0.139	110\％	1，632	5，069	32．2\％	2，184	1，839	602	23，038	19，399				3，350
MCDSX	5	2.157	0.139	110\％	1，632	5，069	32．2\％	2，184	1，839	602	23，038	19，399				3，350
MCTX	6	1.799	0.334	110\％	5，612	5，069	110．7\％	6，879	4，485	296	16，000	10，432				10，377
MCTSX	6	1.838	0.081	110\％	1，309	5，069	25．8\％	1，386	1，125	330	15，608	12，668				2，986

Giovanni Volpini
KEK 20 November 2014

Total for series＋spares： $45+51 \mathrm{~kg}$ procured for prototypes： 38 kg

HiLumi-MAGIX schedule

WPO

M 0.1
M 0.2
M 0.3
M 0.4
M 0.5

WP1

M 1.1
 M 1.2

D 1.1a Mar 201
D1. Mar 2014 * Preliminary 2D design of the five magnet types
D 1.1b Mar 2015 * Preliminary 3D design of the five magnet types
D 1.2 Oct 2016 Executive design of the five magnet types
M 1.3
M 1.4a
M 1.4b
M 1.5
M 1.6a
M 1.6b
M 1.6 c

WP2

M 2.1	D 2.1	June 2015
M 2.2	D 2.2	Dec 2015
M 2.3		Feb 2016
M 2.4		Apr 2016
M 2.5		Jun 2016
M 2.6	D 2.3	Dec 2016

Project Management

Feb 2014 Kick-off meeting with specification transfer
Dec 2014 1st year activity monitoring
Dec 2015 2nd year activity monitoring
Dec 2016 3rd year activity monitoring
Jun 2017
4th year activity monitoring

CORRAL

Dec 2015 ** MgB2 quadrupole design.
Mar 2016 *** Octupole and decapole construction
Jul 2016 *** Quadrupole and dodecapole construction
Oct 2016 MgB2 quadrupole construction
Apr 2015 **** Test of the sextupole
July 2016 **** Test of the octupole and decapole
Feb 2017 **** Test of the dodecapole and quadrupole
D 1.3 Mar 2017 Corrector magnet test report
D 1.4 June 2017 Corrector magnets final check, packing and transport to CERN

PADS

2D magnetic design to minimize the cross talk between the two dipoles.
2D mechanical design.
3D magnetic design including the coil ends.
Quench preliminary analysis.
3D mechanical design with the axial pre-load study.
Final Engineering design.

HiLumi-MAGIX schedule

v. February 2014

Project Management

M 0.1	Feb 2014
M 0.2	Dec 2014
M 0.3	Dec 2015
M 0.4	Dec 2016
M 0.5	Jun 2017

Kick-off meeting with specification transfer
1st year activity monitoring
2nd year activity monitoring
3rd year activity monitoring
4th year activity monitoring

CORRAL

WP1

\section*{M 1.1 | | Jul 2014 | Sextupol engineering design |
| :--- | :--- | :--- |}

M 1.2 Dec 2014 Sextupol construction.
D 1.1a Mar 2014 * Preliminary 2D design of the five magnet types
D 1.1b Mar 2015 * Preliminary 3D design of the five magnet types D 1.2 Oct 2016 Executive design of the five magnet types

Dec 2015 ** MgB2 quadrupole design.
M 1.3
M 1.4a
M 1.4b
M 1.5
M 1.6a
M 1.6a
M 1.6b
M 1.6c
Mar 2016 Octupole and decapole construction
Jul 2016 *** Quadrupole and dodecapole construction
Oct 2016 MgB2 quadrupole construction
Apr 2015 **** Test of the sextupole
July 2016 **** Test of the octupole and decapole

D 1.3 Mar 2017 Corrector magnet test report
D 1.4 June 2017 Corrector magnets final check, packing and transport to CERN

PADS

M 2.1 D 2.1 June 2015 2D magnetic design to minimize the cross talk between the two dipoles
M 2.2 D 2.2 Dec 2015
M $2.3 \quad$ Feb 2016
M 2.4 Apr 2016
Jun 2016 Quench preliminary analysis.
M 2.5 Jun 2016 3D mechanical design with the axial pre-load study. Final Engineering design.

	2014											2015												2016												2017				
		2	3	4	5	6	7	8	9	10	1112	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7			0	11	12	1	2	3	5	6

M 2.6 D 2.3 Dec 2016

Explanation
Activity
Milestone
Deliverable

Milestones and Deliverables

Milestones

M 1.1 Sextupole engineering design completed.

M 1.2 Sextupole construction completed.
M1.3 MgB2 quadrupole design completed.
M 1.4.a Octupole and decapole construction completed.
M 1.4.b Quadrupole and dodecapole construction completed.
M 1.5 MgB2 quadrupole construction completed
M 1.6.a Sextupole test
M 1.6.b Octupole and decapole test.
M 1.6.c Quadrupole and dodecapole test.

July 2014
December 2014
December 2015
March 2016
July 2016
October 2016
April 2015
July 2016
February 2017

Deliverables

D 1.1a Preliminary 2D design of the five magnets, from quadrupole to dodecapole
D 1.1b Preliminary 3D design of the five magnets, from quadrupole to dodecapole.
D 1.2 Executive design of the five magnets, from quadrupole to dodecapole.
D 1.3 Test report (...) with the tests results performed on the corrector magnets
March 2014

D 1.4 Magnet Corrector magnet prototypes for all the five types, cold tested and qualified. June 2017
It does not include:
the warm and cold magnetic characterization (harmonic analysis);
the cryostat and its mechanical connections;
the mechanical and electrical interconnections between the magnets themselves and the rest of the machine; the realization of the series, composed of a total of 48 magnets of various types.

