

Wrap-up from WP2

G. Arduini for WP2

Acknowledgments: WP2 Task Leaders and Members, Speakers and Conveners of the WP2 Sessions

Specifications for the dipole
 IT/D2/Q4 corrector magnets taking
 into account their required
 functionalities and constraints.

 Requirements could be further relaxed if crab cavities could be remotely aligned on a fill by fill basis. Feasibility should be assessed and weighted against the cost/complexity of high field correctors

Realistic assumptions for alignment, transfer function errors, ...

In general: tune spread can be reduced by changing the powering of the IT

-> exploit compensation between Q1/3 and Q2a/Q2b

Q1-Q2-Q3 (all in series): preferred from hardware side over Q1-Q2a Q2b-Q3

• Longer transition from to β^* = 6 injection tunes to 44 cm. ATS condition starts from 3 m.

Further optimizations to smooth the transition are foreseen for HLLHCV1.1.

Time	β*	Slower
0 s	6 m	
68 (241) s	3 m	Q4/Q6
88 (313) s	1.9 m	Q6
150 (490) s	70 cm	Q6
270 (792) s	44 cm	Q6

JP Burnet, R. De Maria, M. Giovannozzi, Q. King

270 s reached with bipolar converters in Q5 and the small inductance of MQYY.

Analysis of the squeeze to be continued:

- QPS limit
- rounding in/out
- Limitations for the ramp down/pre-cycle

Operational scenarios

Viable scenarios for levelling at $5x10^{34}$ cm⁻² s⁻¹ and at $7.5x10^{34}$ cm⁻² s⁻¹ exist

D. Banfi, D. Barranco, T. Pieloni, A. Valishev

Field quality margins?

- Multipolar Errors do have an impact at nominal intensity for 15 cm optics.
- Above 600 µrad x-angle multipolar errors not more in shadow of BB
- Evaluating the impact of each multipolar error of the triplet

Field quality margins?

- We have some uncertainties on the predictions of the DA (20-30% from Run I experience)
- We need margins for:
 - N_h and ε variations
 - Chromaticity and octupoles for stability
 - Additional effects are being studied individually (IP2/8, crab cavities) need to minimize and integrate them
 - Note that the possibility for sorting will be very limited

10% Intensity fluctuations reduces DA

 $6.4 \rightarrow 5.8 \,\sigma$

HL-LHC impedance

- Progress with the LHC/HL-LHC Impedance model
- Reduced discrepancy model / measurement

N. Biancacci, O. Frasciello, N. Mounet, B. Salvant et al.

Beam stability

W/o Crab cavities

- We need low impedance collimators:
 - Mo coated Mo Gr collimators seem to provide the best match resistance to damage/low impedance

E. Métral, N. Mounet, F. Carra

Beam stability

- Crab cavity HOM
 Impedance is dominates
 at low β*
 - Some HOM modes to be damped.
 - R/Q must be reduced as well.
- Advantage in reducing the number of cavities if higher voltage per cavity can be achieved
- Need to continue the optimization work in tight collaborations with WP4

E. Métral, N. Mounet, N. Biancacci, B. Salvant

Heat loads

- Complete analysis of the zoo of vacuum chambers and magnets in the TAS-Q7 area for heat loads:
 - Electron cloud
 - Image currents
 - Synchrotron Radiation (at first view negligible)
- Confirmed the need for ecloud suppression measures (coating and possibly clearing electrodes) for the triplets/D1 in IP1/5 and IP2/8

G. ladarola

Total heat load on the beam screen cooling circuit

Heat loads

- Matching sections:
 - New Q4/D2 in IP1/5 will require aC coating.
 - Pending the results of the scrubbing run 2015 (i.e. minimum SEY achievable):
 - Proposal for D2 IP2/8 and other Quads of the IP1/5 MS

1.1

1.2

1.3

SEY

D2 IP1/5

1.6

1.5

G. ladarola

Next step for the layout

- Aiming for a second layout version in the first half of 2015:
 - Need to fix geometry of the triplet area (integration and triplet quadrupole length). Implications:
 - Increased Strength D1/D2 or movement of the matching section
 - Reduction of the β^* reach and possible implications on field quality
 - To be noted:
 - Once we reduce the gradient and increase the length of the quadrupoles to get a constant integrated gradient any gain in gradient performance will not be usable (except as margin for operation to higher energy)
 - The same applies for the space increase.