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The Big Question

We want the LHC to tell us: is electroweak symmetry 
breaking natural? 
!
Early indications point to “no.” But there’s still some 
room for (more or less) natural new physics that has 
hidden so far. 
!
How can naturalness hide, and how do we coax it out 
if it is hiding?



EWSB in SUSY
Minimize potential with respect to Higgs VEVs vu and vd to get 
two equations (e.g. Martin SUSY Primer hep-ph/9709356):

identically zero. Such directions in field space are called D-flat directions, because along them the part
of the scalar potential coming from D-terms vanishes. In order for the potential to be bounded from
below, we need the quadratic part of the scalar potential to be positive along the D-flat directions.
This requirement amounts to

2b < 2|µ|2 +m2
Hu

+m2
Hd

. (8.1.3)

Note that the b-term always favors electroweak symmetry breaking. Requiring that one linear
combination of H0

u and H0
d has a negative squared mass near H0

u = H0
d = 0 gives

b2 > (|µ|2 +m2
Hu

)(|µ|2 +m2
Hd

). (8.1.4)

If this inequality is not satisfied, then H0
u = H0

d = 0 will be a stable minimum of the potential (or there
will be no stable minimum at all), and electroweak symmetry breaking will not occur.

Interestingly, if m2
Hu

= m2
Hd

then the constraints eqs. (8.1.3) and (8.1.4) cannot both be satisfied.

In models derived from the MSUGRA or GMSB boundary conditions, m2
Hu

= m2
Hd

is supposed to

hold at tree level at the input scale, but the Xt contribution to the RG equation for m2
Hu

[eq. (6.5.39)]
naturally pushes it to negative or small values m2

Hu
< m2

Hd
at the electroweak scale. Unless this

effect is significant, the parameter space in which the electroweak symmetry is broken would be quite
small. So in these models electroweak symmetry breaking is actually driven by quantum corrections;
this mechanism is therefore known as radiative electroweak symmetry breaking. Note that although a
negative value for |µ|2+m2

Hu
will help eq. (8.1.4) to be satisfied, it is not strictly necessary. Furthermore,

even if m2
Hu

< 0, there may be no electroweak symmetry breaking if |µ| is too large or if b is too small.
Still, the large negative contributions to m2

Hu
from the RG equation are an important factor in ensuring

that electroweak symmetry breaking can occur in models with simple boundary conditions for the soft
terms. The realization that this works most naturally with a large top-quark Yukawa coupling provides
additional motivation for these models [187, 153].

Having established the conditions necessary for H0
u and H0

d to get non-zero VEVs, we can now
require that they are compatible with the observed phenomenology of electroweak symmetry breaking,
SU(2)L × U(1)Y → U(1)EM. Let us write

vu = ⟨H0
u⟩, vd = ⟨H0

d ⟩. (8.1.5)

These VEVs are related to the known mass of the Z0 boson and the electroweak gauge couplings:

v2u + v2d = v2 = 2m2
Z/(g

2 + g′2) ≈ (174 GeV)2. (8.1.6)

The ratio of the VEVs is traditionally written as

tan β ≡ vu/vd. (8.1.7)

The value of tan β is not fixed by present experiments, but it depends on the Lagrangian parameters
of the MSSM in a calculable way. Since vu = v sin β and vd = v cos β were taken to be real and positive
by convention, we have 0 < β < π/2, a requirement that will be sharpened below. Now one can
write down the conditions ∂V/∂H0

u = ∂V/∂H0
d = 0 under which the potential eq. (8.1.2) will have a

minimum satisfying eqs. (8.1.6) and (8.1.7):

m2
Hu

+ |µ|2 − b cot β − (m2
Z/2) cos(2β) = 0, (8.1.8)

m2
Hd

+ |µ|2 − b tan β + (m2
Z/2) cos(2β) = 0. (8.1.9)

It is easy to check that these equations indeed satisfy the necessary conditions eqs. (8.1.3) and (8.1.4).
They allow us to eliminate two of the Lagrangian parameters b and |µ| in favor of tan β, but do not
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These are tree-level results in the MSSM. A 125 GeV Higgs 
means either: large loops or beyond MSSM. But the main 
effect is to replace mZ in these formulas with a corrected 
number of the same order of magnitude.



EWSB in SUSY

the case of the MSSM, are:

M2
U = b cot� +

1
2

m2
Z cos(2�) (3)

M2
D = b tan� � 1

2
m2

Z cos(2�). (4)

The appearance of m2
Z here comes from assuming that only the tree-level D-term quartic cou-

plings are present. Of course, this assumption is not consistent with the observed Higgs mass
in our universe, since m2

h < m2
Z in the tree-level MSSM. Nonetheless, it is useful to take a

quick look at tuning in this case because it is familiar and it offers a useful starting point be-
fore proceeding to theories with more general quartic terms. Adding the two EWSB equations
gives

M2
U +M2

D =
2b

sin(2�)
= m2

A, (5)

using the result one obtains by diagonalizing the pseudoscalar mass matrix. On the other
hand, multiplying Eq. (3) by tan2� and subtracting from Eq. (4), we obtain:

1
2

m2
Z =

M2
D �M2

U tan2�

tan2� � 1
. (6)

In order to have a theory that is not fine-tuned, we would like the individual terms on the
right-hand side to be not much larger than the terms on the left-hand side. Recalling that
M2

U = m2
Hu
+
��µ
��2, we can extract three conditions:

��µ
��2 ⇠< m2

Z���m2
Hu

��� ⇠< m2
Z

m2
Hd ⇠< m2

Z tan2� . (7)

The first of these equations is the very familiar condition that higgsinos should not be much
heavier than the Z boson to prevent tree-level tuning [1,6–9,33]. The second is unsurprising,
since tan� > 1 so that the Higgs that gets a VEV has a significant component in H0

u . In
order to obtain a VEV at the weak scale, this Higgs should have a mass near the weak scale.
The final condition receives the least attention, although it has been discussed at times in
the literature (e.g. [6, 21]). It tells us that the down-type Higgs soft mass—which, at large
tan� , is approximately a measure for the mass of the states A0, H0, and H±—cannot be much
larger than mZ tan� . The reason this bound typically receives less attention is that it is usually
assumed that tan� can naturally be very large, allowing the heavy Higgs bosons to be very
heavy without a large amount of fine-tuning. We think that it is timely to revisit this tree-level
naturalness constraint for two reasons. First, many of the models that are frequently studied
as ways of lifting the Higgs mass to 125 GeV operate best at small-to-moderate tan� . Second,
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Rearranging a bit: MU2, MD2 the masses of the up-type and 
down-type Higgs in the Lagrangian, b the mass mixing:

A natural theory of EWSB is one where there are no large 
cancellations either among terms in these equations or 
within a single term.
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(higgsinos)
(higgs)

(heavy Higgses H0,+/-, A0)

M2

U =
�
m2

Hu

�
tree

+
�
m2

Hu

�
loop

+ |µ|2

(stops, gluinos via the loop term)

Constrains:



Stops & NaturalnessAn Observation

h h

t̃

+
h h

t̃

h h

t

Consider the diagrams in Fig. 1. We’ve already observed that the one at left is problematic: it’s a
renormalization of an external line, so we don’t want to include it when we compute a loop amplitude. In
shamplitude calculations, it shows up as unpleasant 1

s12...(n�1)
⇥ ⇤ factors in the amplitudes we’re trying

to build the shamplitude out of, which we are currently removing by hand.
The other kind of bubble diagram with one gluon connected at one end is shown on the right in Fig. 1.

It has a two-particle vertex at the other end. As a result, it has the structure:

�
d4⇤

(2⇥)4
�1µ (2⇤µ + kµ1 ) J(k2, . . . kj) · J(kj+1, . . . kn)

(⇤2 �m2)((⇤+ k1)2 �m2)
. (1)

Notice that this always contributes 0 to the loop integral: �1 · k1 = 0, and the bubble integral, linear in ⇤µ,
can only be proportional to kµ1 , because all dependence on the other momenta factors out of the integrand.

So, we can in fact drop every diagram with only one gluon connected on one side of a bubble. It’s tempting
to try to inductively turn this into a procedure for generating shamplitudes only from other shamplitudes,
not from amplitudes, but the argument doesn’t work. It would be nice to do something more systematic
than dropping terms by hand. Is there a nice procedure that makes use of this fact?

At least for the 4-point shamplitude, it means computing it directly from Feynman diagrams only involves
summing up nine diagrams (Fig. 2). We can eliminate four of these with a convenient gauge choice.

Four-point loops from Feynman diagrams

If we want to compute the + + ++ amplitude, we can make �i · �j = 0 simply by taking �i =
µ�̃i

hµ ii for all i.

In the + + +� case, we can make �i · �j = 0 by taking �i =
�4�̃i
h4 ii for i = 1, 2, 3 and �4 = �4�̃1

[4 1] . Thus, we can

discard all Feynman diagrams with 4-point (2-scalar 2-gluon) vertices. The remaining diagrams are boxes,
triangles, and the bubble with two particles on each side attached at 3-gluon vertices.
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The box diagram is:

16

�
d4⇤

(2⇥)4
�1 · ⇤ �2 · (⇤+ k1) �3 · (⇤� k4) �4 · ⇤

(⇤2 �m2)((⇤+ k1)2 �m2)((⇤+ k1 + k2)2 �m2)((⇤� k4)2 �m2)
. (2)

1

�m2
Hu

= � 3

8⇡2
y2t

⇣
m2

t̃L
+m2

t̃R
+ |At|2

⌘
log

⇤

TeV

.

Large quantum corrections to the Higgs mass2 term, if the 
stops are heavy or highly mixed:

We expect stops to be below about 500 to 700 GeV, if we 
want to avoid more than a factor of 10 tuning (already not 
really natural!)         (e.g. 1110.6926 Papucci et al.)
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1

We’re already seeing significant constraints on the natural 
stop parameter space. I will come back to this in much 
greater detail soon.



Naturalness and Gluinos
We need the stop to be relatively light for naturalness of a 
light Higgs. But the stop is itself a scalar field, and can get 
quadratic corrections!

We identify the Higgsino mass with µ. Because we are already taking µ ! 200 GeV, this

translates into a roughly natural wino mass range of

mW̃ ! TeV. (8)

Next, we compute the hypercharge D-term loop contribution to Higgs mass-squared, in

figure 3:

huhu

φi

FIG. 3. Higgs mass correction

This gives rise to a higgs mass correction:

δm2
hu

=
∑

scalars i

g′2YiYhu

16π2

(

Λ2
UV −m2

i ln
Λ2

UV +m2
i

m2
i

)

. (9)

Including both the right-handed sbottom and the down-type higgs, as we do in this

section, ensures that the quadratic divergence cancels, but there is still a residual correction

to the higgs mass. Given that other scalars have already been argued to be relatively light,

we can use this correction to estimate the natural range for the mass of b̃R,

mb̃R
! 3TeV. (10)

Finally, q̃L, t̃R also being relatively light scalars, suffer from their own naturalness problem,

with mass corrections dominated by the diagrams in figure 4:

t̃ t̃

t

g̃

g

t̃t̃ t̃
t̃ t̃

g t̃

t̃t̃

FIG. 4. Stop mass correction
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Large corrections come from the gluino, which hence should 
be light (below about 1.5 TeV). As a color octet, the gluino 
has a large production cross section at the LHC.



Gluinos
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Gluino mass bounds are now above a TeV; e.g., 1.3 TeV if 
gluino decays through stops.
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Electroweakinos?
Superpartners of Higgs and electroweak gauge bosons 
are relatively unconstrained; limits mostly in scenarios that 
inflate the branching fraction to leptons:

Naturalness predicts light 
Higgsinos, but direct 
production of Higgsinos at the 
bottom of the spectrum is 
hard to probe.
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Stop Hunting
A long-term interest of mine, starting with hep-ph/0601124 with 
Patrick Meade on stop/neutralino simplified models:
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Figure 2: Significance of signal for t′ scalar N fermion for 10 fb−1 on the left and and 100 fb−1

on the right. The contours (from left to right) represent significance of > 15σ,> 10σ, > 5σ,
> 3σ, and < 3σ. The region mt′ − mN < 200 GeV is not investigated.

challenge both theoretically and experimentally. Still, there is a large region where S/B is
large enough that background contamination is not a major worry. Our proposed techniques
could be applied in a fairly straightforward way.

There are some foreseeable improvements of the analysis we have outlined that could
improve performance in the region where background is neither negligible nor overwhelming.
We have described a simple set of cuts that can be applied over a wide range of masses for
the t′ and N . Once one discovers new physics and gets a rough understanding of its mass
scale, it might be possible to develop more sophisticated cuts to keep more of the signal
relative to background. As just one example, consider the variable MT2 we described in
Section 3.1. On a sample of pure t′t̄′ events, MT2 will have an upper edge Mmax

T2 . If this
sample is superimposed with background, the background events will have a smooth curve
for MT2 lacking the upper edge. Thus a cut that MT2 < Mmax

T2 will improve the signal
purity. To understand how well this can work we would need a good detector simulation
that accurately describes the smearing of the MT2 edge; precisely locating this edge may be
difficult.

There are other instances where altering the cuts could help to increase the signal to
background ratio. For instance, when mt′ ≈ mt + mN , the decay products will generally
be softer than in the typical point in parameter space. In this case one might relax the
requirement that at least one jet have ET > 100 GeV, if it is possible to trigger on the events
using some other requirement (e.g. high ̸ET and several high-ET jets).
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Figure 5: Distribution of events in the (η+, η−) plane for two points with similar cross-section
and kinematics but different spins, with one and two sigma contours. At left: t′ fermion,
mass 700 GeV, N scalar, mass 400 GeV, (σ+, σ−) = (1.31, 1.01); at right, t′ scalar, mass 500
GeV, N fermion, mass 150 GeV, (σ+, σ−) = (1.52, 0.90). In the lighter (t′ scalar) case, there
is on average more boost, so the ellipse is stretched more along the η+ axis.

standard deviations σ+ and σ−, maximizing −2 logL where L =
∏

i P (η+i, η−i) with

P (η+, η−) =
C

σ+σ−

exp

(

−
η2

+

2σ2
+

−
η2
−

2σ2
−

)

. (5.1)

The likelihood fit was performed using Minuit [30]. Minuit returns errors on the fitted
parameters σ+ and σ−. These errors should scale like 1/

√
Nevents, and this is consistent with

the samples of unweighted events we have analyzed. The coefficient, as reported by Minuit, is
approximately 1.2 We view the Minuit errors as approximately describing the experimental
error after a given number of events, though other effects must be considered. (For instance,
finite η resolution will have some effect, although if the smearing of the η’s of the two tops
is uncorrelated it does not seem that it should pose major problems for our fit.)

As an example, consider the degeneracy of t′ fermion at 700 GeV and N scalar at 400
GeV with t′ scalar at 500 GeV and N fermion at 150 GeV. The corresponding fitted values of
σ+ are 1.31 and 1.52 respectively. The cross section (with all branching ratios and efficiencies
taken into account) is about 2.0 fb. Ignoring background (which is a factor of 5 smaller),

2Obtaining large numbers of unweighted events to systematically explore the error on various random
subsamples is computationally intensive, but on a variety of samples up to 7,000 events we obtain error
estimates ranging from 0.93/

√
Nevents to 1.04/

√
Nevents.
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At the time, we were sure stops would be quickly discovered 
and the challenge would be using subtle angular differences 
like those at right to check their spin.



The Unnatural Truth?
Our advocacy of simplified models has been vindicated. Our 
confidence in naturalness, less so. Where are the stops?



The Higgs looks SM-like
A low-energy theorem tells us stops correct Higgs couplings 
to gluons or photons:

A
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For light enough stops, can only avoid a big correction via a 
sizable mixing term Xt. Implies tuning of the coupling. 
!
For any pair of physical stop masses, there’s a maximum Xt. 
(On the diagonal, Xt = 0: symmetric matrix with off-diagonal 
term will always have two unequal eigenvalues.) 
!
So: robust bound on light stops.



Stop constraints

Dead minimum factor of ~5 tuning, even without using direct 
stop searches, gluino searches, etc. “Stealth” can only help so 
much. Most models much worse.
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Figure 2: Assuming no other contributions to Higgs digluon coupling rG other than stops’, region of natural stop that has been
ruled out by Higgs coupling measurements. The three shaded purple regions, from darkest to lightest, are excluded at 3�
(99.73%) level; 2� (95.45%) level; and 1� (68.27%) level. The dashed purple line is the boundary of the region excluded at 90%
CL. The red solid lines are contours of Higgs mass fine-tuning assuming ⇤ = 30 TeV, µ = �200 GeV and tan� = 10. We have
evaluated the tuning with Xt = X min

t , the smallest mixing allowed by the data at 2� for a given pair of masses. The blue dashed
line is a contour of 10% fine-tuning associated with r t̃

G .

this leads to tree-level tuning that is much worse than the loop-level tuning from At . To get the Higgs coupling
within the allowed range of experiments, there could be a cancelation between contributions with opposite signs
from the diagonal masses and mass mixings between two stops. Thus one could also define a fine-tuning measure
associated with the Higgs coupling

Ä
��1

G

ä
t̃
=

�����
X

i

Ç
@ log r t̃

G

@ log pi

å2�����

1/2

, (10)

with the parameter set denoted by p = (m 2
Q3

, m 2
U3

, Xt ). In the limit X 2
t ⇡m 2
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+m 2

t̃2
where the coupling correction

vanishes, this scales with the amount of tuning in the sense that
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So far the precision level of Higgs coupling measurements is still low, thus the fine-tuning of Higgs couplings is not
very large in general. In Fig. 2, we plot the boundary corresponding to 10% fine-tuning in Higgs coupling, which
excludes the possibility that even one stop is below about 100 GeV. (This is, essentially, the same observation that
was made in the context of electroweak baryogenesis in Refs. [18, 19].) We also considered contributions from
light stops to electroweak precision observables, in particular, the⇢ parameter, but the constraints there are much
weaker compared to those from current Higgs coupling measurements.

From Fig. 2, we see that regions with both stops lighter than about 400 GeV is excluded by the Higgs coupling
measurements at 2� (95.45 %) C.L. Along the diagonal line where both stops are degenerate in mass, the constraint
gets stronger and extends to 450 GeV. In general, although one could construct clever natural models where stops
with different decaying topologies could evade the current collider searches, the Higgs coupling measurements
provide a powerful indirect probe independent of the stop decays. One can also see that at 3� level, 20% fine-
tuning of Higgs mass, meaning that loop-level contribution to the Higgs mass is about the same as the tree-level

6

J. Fan and MR, 
1401.7671 
!
Result will be a little 
weaker after recent 
CMS Higgs to 
gamma gamma 
update!



Direct Searches
As we’ve already seen, direct searches probe stops up to 
~700 GeV. But they assume particular decay modes.  
!
Two main roles for theorists in ensuring broader coverage: 
!
1. Fill gaps in existing searches through better observables. 
!
2.  Propose new search channels and simplified models that 
cover more of model space. 
!
I’ll give examples of both.



The Unnatural Truth?
Our advocacy of simplified models has been vindicated. Our 
confidence in naturalness, less so. Where are the stops?

?

Hiding here?



The Stealthy Stop
In the case                           , the stop decays to a top and a 
very soft neutralino. This is kinematically nearly 
indistinguishable from direct      production. 

mt̃ ⇡ mt � m�̃0

tt̄
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Figure 1: 6E
T

distribution in top and stop events, where we have considered stop decays to massless
neutralinos. The rate is normalized to the number of events with two isolated leptons.

di�cult to separate from top pair production [39]. Furthermore, unlike compressed

supersymmetry scenarios, the events do not become more distinctive when recoiling

against an additional hard jet [40].

The stealth stop regime is the most challenging and can involve a large new physics cross

section at the LHC. This regime is the focus of our current study.

We illustrate the stealth regime in Fig. 1, which shows the missing transverse energy

distribution for dileptonic events from top pairs and 200 GeV stop pairs (decaying as

t̃ ! t�0). This is based on a simulation with cuts that we will describe in Sec. 4.3. The

distributions for tops and stops are very similar, because in the rest frame of the stop, in

the limit of small mass di↵erence and massless �0, the momentum of the decay products

is ⇡ �m = m
˜t � mt. In the lab frame, the �0 carries away invisible momentum of order

� �m, and for production of typical stop pairs the boost is not large.

If a stop decays to a massless neutralino, the transition from the three-body regime

to the stealth regime is not smooth. The three-body decay ends abruptly at m
˜t = mt,

at which point two-body stealth decays dominate until the mass splitting becomes large

enough that the decays are no longer stealthy. The case of a stop decay to a gravitino is

slightly more subtle; the gravitino couples to SUSY breaking, leading to two extra powers

of m
˜t � mt phase-space suppression in the two-body decay rate. This allows the three-

body regime to extend to somewhat higher masses, as illustrated in Fig. 2. (This plot

and others throughout the paper rely on simulations performed with MadGraph 5 [41],

as well as goldstino vertices we have implemented [42] using the UFO format [43]). The

estimates in [8] show that current analyses have weakened sensitivity in the range mt .
m

˜t . 250 GeV, which we will take as our characterization of the stealth stop window.

We review the current searches relevant for stops in Sec. 2, characterizing the extent to

which they are simple top rate measurements in this window. Although more data will

reduce the statistical errors on measurements of the top, both experimental systematics

– 3 –

Z. Han, A. Katz, D. Krohn and MR, 
arXiv:1205.5808.
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mass. More precisely, we are labeling a decay “three-body” when m(W+b) < mt � 3�t, and have
taken the top quark mass to be 173 GeV. The neutral fermion � is either the gravitino G̃ or a
massless bino B̃. In the gravitino case, three-body decays persist for larger stop masses, so the
“maximally stealthy stop” is at masses nearer 200 GeV than 175 GeV.
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Figure 3: NLO stop pair production cross section at the 8 TeV LHC, as reported by Prospino [45].
The vertical axis on the right shows the rate as a ratio to the tt̄ rate.

and theoretical uncertainties will remain. Measurements of the top are notoriously di�cult

(see, e.g., Ref. [44]), and so the more handles one has to constrain/discover stops, the

better.

Here we present a set of search strategies which can be used to constrain stops in this

di�cult region of parameter space. While we find no single smoking-gun signature for light

stops, a few robust physical considerations can enhance the sensitivity of searches. It will

be important to combine these considerations, because stops are rare. At the 7 TeV LHC,

the top cross section is about 165 pb (increasing to about 230 pb with 8 TeV collisions [46]),

while the stop cross section for m
˜t = mt is only about one-sixth as large, and drops steeply

at larger masses. (See Fig. 3 for NLO results; recent, more accurate, calculations of stop

production may be found in [47].) Thus, finding stops by simply measuring the total rate

– 4 –

Small fraction of top cross section: hard to see!



Spin Correlations
This is one case where subtle angular deviations could be key 
to discovery:
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Figure 6: ��(⇤+, ⇤�) for tt̄ production, t̃¯̃t production, and tt̄ production with spin correlation
turned o⇥ (i.e., the di⇥erential rates for production and decay are factorized and we randomize the
top helicities in between). Notice that, from the point of view of this variable, stops are essentially
the same as spin-uncorrelated tops. Also, polarization e⇥ects are small, as left- and right-handed
stops have the same distribution.

hypothesis that a spin-correlated tt̄ sample has O(10%) contamination from scalar events,

which approximately look like spin-uncorrelated tops.3

When the LSPs are soft, stop events are similar to top pair events without correlation.

This is illustrated in Figure 6, which shows one distribution, ��(⇤+, ⇤�), which is sensitive

to spin correlations, and for which stops look like tops with spin correlation turned o⇥. We

have calculated the observable for tops with MC@NLO [72, 73] at parton level, and checked

that corrections from varying the top mass and the renormalization and factorization scales

are small relative to the shift that would arise from adding a sample of stops to the tops.

This observable has been studied by ATLAS to probe the existence of spin correlations in

tt̄ production, but so far only in early data and with rather large error bars [74].

In order to confirm the SM top pair spin correlation Ref. [45] proposed a method using

full matrix elements with and without spin correlation. This method has been implemented

experimentally in Tevatron searches [75, 76], which observed evidence for spin correlation

in both the dileptonic and semileptonic channels. Since many more top events are produced

at the LHC than at the Tevatron, we are expecting a more precise measurement at the

LHC of the tt̄ spin correlation. Any deviation from the SM prediction will be a sign of

new physics. In the presence of light stops, we will observe a mixture of correlated and

uncorrelated top pairs. In the following, we discuss the use of the matrix element method

in stop searches. We concentrate on the dileptonic channel in the following discussion.

3One other e�ect that could play a role in angular distributions turns out to be unimportant for us: the

stop can be mostly right-handed or mostly left-handed (as some theoretical models predict; see e.g. [24]),

and so the tops coming from the stop decays can be polarized. While it can be an appreciable e�ect if the

mass splitting between top and stop is large [70, 71], it is a small e�ect in the stealthy regime, as we have

checked explicitly. Hence, we will not discuss it further.
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Stops, being scalars, look 
a lot like tops with no spin 
correlations.
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with 32.8k events. Note in particular that each top plus stop pseudoexperiment is normalized to
the same number of events as each top pseudoexperiment. Left: parton level; right: jet level.

ratio in the cross sections. After kinematic cuts and reconstruction, we are left with

32.8k top events for the pure samples, and 30.4k top events and 2.4k stop events for

the mixed sample. We generate 10k pseudo-experiments corresponding to the two

cases and the resulting L distributions are shown in Fig. 8. For comparison, we also

generate 10k pseudo-experiments at the parton level using the same number of events

as the jet level (after reconstruction). From the jet level result in Fig. 8, we estimate

that on average a light stop of 200 GeV can be excluded at 95% confidence level.

4. Rapidity Gaps

4.1 Top and stop production amplitudes

Initial state tt̄ t̃t̃⇤

gg 68 pb 11 pb

qq̄ 23 pb 1.6 pb

Table 2: LO cross sections for top and stop production processes in MadGraph, for a 180 GeV
stop. Notice, in particular, the tininess of stop production from qq̄ due to the p-wave threshold, as
well as the significant suppression of stop relative to top production even from gluons.

As illustrated in Figure 3, the pair production rate of stops, even with a mass equal to

the top mass, is well below the pair production rate of tops. Delving into the di↵erences

in stop and top production processes will shed some light on this, and also suggest a set

of variables that can be useful in discriminating top from stop events. The rates for top

and stop production at leading order, from either qq̄ or gg initial states, are shown in

Table 2. The most striking fact is the smallness of qq̄ ! t̃t̃⇤, which is explained by p-wave

suppression: the stops in the final state need to carry angular momentum. Since they have

no spin, this implies that they are produced in a p-wave with a rate / �3 near threshold.
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GeV stops. (See also update from 
Z. Han, A. Katz, arXiv:1310.0356)



7 TeV Looks SM-Like. 
8 or 13 TeV: Derive Bound?

CMS, 
1311.3924
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Figure 1: Background-subtracted and unfolded differential cross sections for Df`+`� ,
cos(q`+) cos(q`�), and cos(q`). The error bars represent statistical uncertainties only, while the
systematic uncertainty band is represented by the hatched area. The bin contents are correlated
due to the unfolding.

butions unfolded to the parton level. The results are in agreement with the standard model
predictions for all three measured variables.

Table 2: Parton-level asymmetries. The uncertainties in the unfolded results are statistical, sys-
tematic, and the additional uncertainty from the top-quark pT reweighting. The uncertainties
in the simulated results are statistical only, while the uncertainties in the NLO calculations for
correlated and uncorrelated tt spins come from scale variations up and down by a factor of
two. The prediction for Ac1c2 is exactly zero in the absence of spin correlations by construction.

Asymmetry Data (unfolded) MC@NLO NLO (SM, correlated) NLO (uncorrelated)

ADf 0.113 ± 0.010 ± 0.007 ± 0.012 0.110 ± 0.001 0.115+0.014
�0.016 0.210+0.013

�0.008
Ac1c2 �0.021 ± 0.023 ± 0.027 ± 0.010 �0.078 ± 0.001 �0.078 ± 0.006 0
AP 0.005 ± 0.013 ± 0.020 ± 0.008 0.000 ± 0.001 N/A N/A
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Precision Top Cross Section
Czakon, Mitov, Papucci, Ruderman, Weiler 1407.1043
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FIG. 1: E�ciencies and acceptances for stop pair production (left) and top pair production with one or two tops decaying to
stop and neutralino (right) in the CMS top cross section measurement considered [46]. The e�ciencies are normalized to the
SM top e�ciency of 0.12. Solid lines refer to a right-polarized stop (blue for the case of bino LSP, purple for the gravitino
LSP), while dashed lines to a left-polarized stop (red for bino LSP and orange for gravitino LSP). We use Pythia for 2(t ! t̃)
(dotted magenta), neglecting polarization and o↵-shell e↵ects.

Procedure: In practice, in the presence of a SUSY
contamination, the measured cross section is

�exp
tt̄ = �tt̄(mt)

✓
1 +

✏t̃t̃⇤(mt,mt̃,m�0
1
)

✏tt̄(mt)

�t̃t̃⇤(mt̃)

�tt̄(mt)

◆
(1)

where with ✏ we collectively denote the e�ciency and
acceptances for an event to be selected by the experi-
mental analysis. We keep the explicit mass dependence
of the various quantities, and for simplicity we include
only the top squark pair production contribution. This
formula gets further modified if the top is kinematically
allowed to decay to a stop, as described below. Note that
throughout this paper, we assume the stop always decays
to a lighter neutralino, leaving the possibility of decays
to charginos for future work.

For mt̃ ⇠ mt, �t̃t̃⇤ ⇠ 26 pb at
p
s = 7 TeV. Tak-

ing the e�ciencies ✏tt̄,t̃t̃⇤ to be the same, and adding
the theoretical and experimental uncertainties in quadra-
ture, one naively expects to set upper bounds at 95%C.L.
on �t̃t̃⇤ of 45 pb and 25 pb by using the SM NLO+NLL
and NNLO+NNLL predictions for �tt̄ respectively. This
clearly indicates that it was not possible [5] to use our
proposed method before the NNLO results were avail-
able. A similar result persists in a more careful analy-
sis [62] as illustrated below.

We now describe our method in detail. For concrete-
ness we focus on the CMS 7TeV 2.3 fb�1 cross section
measurement [46], based on dileptonic tt̄ final states and
using a cut and count approach, providing a measure-
ment uncertainty ��tt̄/�tt̄ ⇠ 4.5%, comparable to the
most precise LHC measurements. It is useful for illustrat-
ing our method, since, contrary to those analyses based
on multivariate (MVA) techniques, it allows us to repro-
duce fairly well its results without a detailed knowledge

of the unpublished inner workings of the analysis. More-
over, cut and count analyses tend to be more inclusive
than MVA ones and therefore they may accept a larger
fraction of the contaminating SUSY signal. We stress
that ultimately the study proposed here should be per-
formed directly by the experimental collaborations.

In the following we first discuss the case where the SM
top mass is known and use mt = 173.3 GeV. This as-
sumes that a possible stop contamination in the tt̄ sample
does not bias current top mass measurements. We leave
the investigation of this question to future work [64],
while we limit ourselves to showing its implications by
relaxing this assumption later in this letter.

The quantity in (1) that needs to be estimated
is ✏t̃t̃⇤/✏tt̄. For this purpose we generated events
with MadGraph 5 [65], showered and hadronized with
Pythia 6.4 [66], and performed jet clustering using Fast-
Jet 3.0 [67, 68]. Both o↵-shell and on-shell decays of the
top and stop have been properly included. In particular
we find that o↵-shell e↵ects are important also for the
region mt̃ > mt. We have implemented the CMS analy-
sis in the ATOM package [69] and validated it with the
information provided in the experimental paper. We find
very good agreement comparing the t̄t acceptance ⇥ ef-
ficiency, see Table I. Additional cross checks have been
performed with PGS4 [70].

To further reduce the recasting uncertainties, we will
always use the ratio ✏t̃t̃⇤/✏tt̄ with both ✏’s estimated with
the same tools. We use the NLO+NLL expression for
the stop cross section [71–73] and neglect SUSY e↵ects
in the top production cross section [74, 75] since they are
negligible for the spectrum considered here. Our findings
are shown in Fig. 1a for a massless lightest SUSY particle
(LSP). The e�ciency for stop pair production relative to
top quickly drops for mt̃ < mt, but it is still sizable for

If stops look top-like, why 
doesn’t the top cross 
section rule them out? 
!
The bottleneck was 
systematic uncertainty on 
theory. New NNLO+NNLL 
(Czakon & Mitov) makes 
progress possible.
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FIG. 3: Left: two dimensional 95% C.L. exclusion limits in the neutralino-stop mass plane. Our derived limits are shown in
red (with expected limits shown as a dashed line), LEP limits [63] in gray while the CMS direct stop search in the light stop
region [25] is shown in blue. Right: excluded regions for massless neutralino in the stop-top mass plane. Excluded region from
our analysis derived using the top cross section alone (i.e. without assuming prior knowledge of the top mass) are shaded in
red, while the LEP limits are shown in gray. The e↵ect of combining the �tt̄ measurement with current mt measurements
(assuming no stop contamination) is shown as a blue line. Expected limits are shown as dashed lines. For both plots we assume
right-handed stop, t̃R.

limits [63] beyond the LEP kinematical range into a re-
gion currently unconstrained by LHC direct searches.
Stop mass limits based on the top cross section may
reach and extend beyond the top mass, with the bino
LSP case being more strongly constrained at higher stop
masses and being less constrained, for t̃R decays around
80 � 100GeV, due to the less e�cient t ! t̃�0

1 decays,
see Fig. 1 (right).

In Fig. 3a we present the case where the bino mass
is allowed to move in the (mt̃, m�0

1
) plane, comparing

our limits to those obtained by other existing direct stop
searches [25, 63]. Our method is closing the stealth stop
window for low neutralino masses, m�0

1
. 20GeV, while

it is not e↵ective for higher masses because signal rates
rapidily become too low with increasing m�0

1
.

Finally, in Fig. 3b we consider the case where the as-
sumption of a known top mass is relaxed. We use the
mt dependence of �tt̄ presented in [59]. We show the
limits of this scenario in the (mt̃,mt) plane for massless
bino. If mt is not known, either due to stop contam-
ination or to theoretical uncertainties [77], an increase
in mt can reduce �tt̄, thus compensating the e↵ects of
the extra SUSY contributions. Therefore the top cross
section is now allowing a significantly larger band in the
top–stop mass plane. However a 10GeV shift in the top

mass is required to re-open the stop window all the way
below 150GeV. While this shift is likely too large to
be allowed by current top mass measurements given the
agreement across di↵erent analysis techniques and given
the O(2GeV) uncertainty on mt in the endpoint analy-
sis in [78], the precise extent of the allowed regions can
ultimately be constrained only by studying SUSY con-
tamination in top mass analyses. In Fig. 3b we also
show the limit that would be achieved by combining the
cross section measurement with a mass measurement of
mt = 173.34 ± 0.76GeV [79], in order to illustrate the
sensitivity assuming present mass measurements are not
significantly impacted by the presence of stops.

Discussion: We have introduced a novel method for
constraining light stops with precision top cross sec-
tion measurements at the LHC. The idea of using preci-
sion SM measurements to constrain BSM physics is well
known for indirect observables (like electroweak preci-
sion measurements or flavor violating observables), but
mostly unexplored at high energy colliders, such as the
LHC, where a dichotomy between “measurements” and
“searches” is often present. This type of studies can be
very powerful in covering the shortcomings of standard
searches, but clearly require high precision for both the-
ory and experiment which, at present, makes them appli-

Czakon, Mitov, Papucci, Ruderman, Weiler 1407.1043



Alternative Stop Decays
It’s important to close the “stealthy stop” window for stops 
near 200 GeV. (See also work in progress of Czakon, Mitov, 
Papucci, Ruderman, Weiler.) 
!
Another option is that stops decay in a very different way and 
have been missed. Lots of recent attention on RPV stops, for 
example Brust, Katz, Sundrum 1206.2353:
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Figure 1. The sbottoms are pair-produced and undergo charged-current decay. When both W s
(either on- or off-shell) decay leptonically, they leave a spectacular signature of two leptons + jets,
which reconstruct two equal-mass resonances. We analyze this signal in Sec. 3 and 4.

invariant masses. Discard the event if the minimal possible mass difference is too big.

This step is essentially identical to the standard multi-jet resonances search [40].

Unfortunately our events with 2 leptons, MET and multijets have an appreciable back-

ground, on top of which we are looking for our bumps. This background is heavily domi-

nated by dileptonic tt̄ (including lτl decay modes). One can show that with an adequate

choice of cuts all other backgrounds (Z → τlτl + jets, DY dileptonic production with jets,

WW + jets) are highly subdominant to tt̄, and we will discuss it in more detail in the

next section. Production cross section for dileptonic tt̄ exceeds our signal by two orders of

magnitude, and even though the extra jets in these events do not come from resonances,

reconstructing “by accident” two pairs of jets with similar invariant masses is common.

The above mentioned steps, plus standard cuts for the overall hardness of the event, are

still not enough in order to see clear bumps on top of this continuous tt̄ background after√
s = 8 TeV run. We therefore use other, less standard discriminators to distinguish the

signal from the background.

There are two additional important features which distinguish our signal from the

background. Usually in a dileptonic tt̄ event, hardness of the entire event correlates with

the hardness of the leptons and the /ET . This happens because the W is often boosted in

the rest frame of the decaying top. However it is not the case in the signal. As we have

explained in Sec. 2, naturalness and visibility motivate mild splittings between the stop

and the sbottom, usually so small that they do not allow emission of the on-shell W . Even

if emission of the on-shell W is allowed it typically has little boost in the rest frame of the

decaying sbottom. This results in relatively small pT (l) and /ET even if the event overall

is very hard. We demonstrate the distribution of /ET and the transverse momentum of

the leading lepton in signal and background events on Fig. 2. This immediately suggest

that just cutting on the tail of high /ET and high pT (l1) should be a decent discriminator
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Figure 4. Signal and background events for the benchmark point 1 after L = 20 fb−1. Red
represents the signal, blue the dileptonic tt̄ background, violet is tt̄, lτl background and grey is
tt̄, τlτl background. On the LH side plot we do not impose b-veto, while on the RH side plot we
do. We conservatively assume b-tag efficiency ∼ 40%.

resonances, and smaller radius usually leads to losing relevant hadronic activity. The

clustering radius is not optimized, but radii of order R ∼ 1.0 are likely to be the most

adequate.

2. Demand precisely two isolated leptons (carrying more than 85% of the pT in the cone

around the lepton with radius R = 0.3) in each event. We demand pT (l1) > 20 GeV

and pT (l2) > 10 GeV.4 The leptons should have |η| < 2.5. We discard the event if the

leptons have same flavor and 81 GeV < mll < 101 GeV to remove the background

from Z + jets events.

3. Demand that the event is sufficiently hard, ST > 400 GeV as defined in Eq. (3.2)

and /ET > 35 GeV.

4. Require four or more hard jets in the event with pT (j4) > 30 GeV. This requirement

is natural since we are trying to reconstruct two resonances of t̃1, which both decay

into two quarks.

5. Using the variables in Eq. (3.3), demand r/ET
< 0.15 and rl < 0.15.

6. Try all possible pairings between four leading jets, and pick up the combination

which minimizes the difference between the reconstructed invariant masses. Discard

the event if the minimal possible mass difference is bigger than 10 GeV.5 If the event

4The logic of the cut on the pT of these leptons is dictated by trigger demands. Unfortunately the

trigger information is not public. However relying on the logic of
√
s = 7 TeV run, we hope that the events

with these leptons should be triggered on with sufficiently high efficiency, namely more than 90% [29].

Parenthetically we notice that if the threshold on the pT of the leading lepton can be lowered, the results

that we performed can be further improved. Moreover, some of the events can be triggered on because they

have sufficient HT or 4 or more sufficiently high-pT jets. We do not try to take into account the events

which do not pass these lepton requirement, however lots of them can be “salvaged” since they pass other

triggers and the ideal search will have to combine several different triggers.
5These cuts are not optimized, but it is also not very different from 7.5% of the resonance mass which

was used in [37] . We explicitly checked our results with respect to variation of this cut. The results are

rather stable as long as this cut does not exceed ∼ 25 − 30 GeV. We leave further optimization of these

cuts to the experimentalists as it is also going to be affected by jet energy resolution.
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RPV is Option #1 of 
many ways to hide 
naturalness. All 
energy goes to 
visible particles.



Gluino Bounds in RPV

ATLAS-CONF-2013-091
(a) 6-quark model (b) 10-quark model

Figure 1: Feynman diagrams for the gluino decays used as benchmarks for this search. Diagrams for (a)
the 6-quark model and (b) the 10-quark model are shown.

Section 6.

2 Detector, data acquisition, and object definitions

The ATLAS detector [20,21] provides nearly full solid angle coverage around the collision point with an
inner tracking system covering |η| < 2.51, electromagnetic and hadronic calorimeters covering |η| < 4.9,
and a muon spectrometer covering |η| < 2.7.

The ATLAS tracking system is comprised of a silicon pixel tracker closest to the beamline, a mi-
crostrip silicon tracker, and a straw-tube transition radiation tracker at radii up to 108 cm. These systems
are layered radially around each other in the central region. A thin solenoid surrounding the tracker
provides an axial 2 T field enabling measurement of charged particle momenta. The track reconstruction
efficiency ranges from 78% at ptrack

T = 500 MeV to more than 85% above 10 GeV, with a transverse
impact parameter resolution of 10 µm for high momentum particles in the central region. The overall
acceptance of the inner detector (ID) spans the full range in φ, and the pseudorapidity range |η| < 2.5 for
particles originating near the nominal LHC interaction region.

The calorimeter comprises multiple subdetectors with several different designs, spanning the pseu-
dorapidity range up to |η| = 4.9. The measurements presented here use data from the central calorimeters
that consist of the Liquid Argon (LAr) barrel electromagnetic calorimeter (|η| < 1.475) and the Tile
hadronic calorimeter (|η| < 1.7), as well as two additional calorimeter subsystems that are located in the
forward regions of the detector: the LAr electromagnetic end-cap calorimeters (1.375 < |η| < 3.2), and
the LAr hadronic end-cap calorimeter (1.5 < |η| < 3.2). As described below, jets are required to have
|η| < 2.8 such that they are fully contained within the barrel and end-cap calorimeter systems.

The jets used for this analysis are found and reconstructed using the anti-kt algorithm [22, 23] with
a radius parameter R = 0.4. The energy of the jet is corrected for inhomogeneities and for the non-
compensating nature of the calorimeter by weighting the energy deposits in the electromagnetic and the
hadronic calorimeters separately by factors derived from the simulation and validated with the data [24].

1The ATLAS reference system is a Cartesian right-handed coordinate system, with the nominal collision point at the origin.
The anticlockwise beam direction defines the positive z-axis, while the positive x-axis is defined as pointing from the collision
point to the centre of the LHC ring and the positive y-axis points upwards. The azimuthal angle φ is measured around the beam
axis, and the polar angle θ is measured with respect to the z-axis. Pseudorapidity is defined as η = ln[tan( θ2 )], rapidity is defined
as y = 0.5 ln[(E + pz)/(Epz)], where E is the energy and pz is the z-component of the momentum, and transverse energy is
defined as ET = E sin θ.

2

Can get events with many hard jets: background is QCD, but 
QCD usually doesn’t share energy among jets so evenly.
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also see: Evans, Kats, Shih, Strassler 1310.5758
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Figure 14: Expected and observed mass exclusions at the 95% CL in the BR(t) vs BR(b) space for
BR(c)=0%, 50%. Each point in this space is individually optimized and fit. Masses below these values
are excluded in the 6-quark model. Bin centers correspond to evaluated models.
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ATLAS-CONF-2013-091. Exclusions typically ~ 800 GeV.
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Gluino Bounds in RPV: 
Same-Sign Dilepton

uralness considerations. It is well known that the only superpartners required to be

light (<⇠ 1 TeV) by naturalness are the stops t̃1,2, the Higgsino H̃, and the gluino g̃:

see, for example, Ref. [4] for a clear and careful explanation of this point. Of these,

H̃ has a suppressed production rate due to its weak coupling. Thus, it will not have a

considerable impact on phenomenology as long as it is not the LSP. We will therefore

consider a simplified model [5] with just two states: a gluino g̃ and a stop t̃. All other

SUSY particles are assumed to be either too heavy or too weakly coupled to be rele-

vant at the LHC.2 We assume that the stop is the LSP, as motivated by naturalness

considerations, and that mg̃ > mt̃ +mt. We focus on gluino pair-production, pp ! g̃g̃,

followed by a cascade decay:

g̃ ! t̃t̄, t̃ ! b̄s̄

or

g̃ ! t̃⇤t, t̃⇤ ! bs . (1.1)

The branching ratio for each of these channels is 50%, assuming a purely Majorana

gluino. With probability of 50%, the gluino pair will produce a same-sign top pair

(tt or t̄t̄). If each top decays leptonically, the final state will contain two same-sign

leptons: e±e±, µ±µ±, or e±µ±. Such “same-sign dilepton” (SSDL) events are very rare

in the SM, and the SSDL signature already plays a prominent role in the LHC SUSY

searches. Typically, these searches demand substantial MET in addition to SSDL,

reducing their sensitivity to the RPV cascades (1.1) where the only sources of MET

are neutrinos from leptonic top decays. However, the SSDL signature by itself is so

striking that searches may be conducted even with no (or very low) MET cut, making

them sensitive to RPV SUSY [6–9].3 The first goal of this paper is to estimate the

current bounds on our simplified model using the latest publicly available CMS search

for the SSDL signature [14]. This search uses 10.5 fb�1 of data collected at
p
s = 8

TeV in the 2012 LHC run.

While the current SSDL searches already place interesting bounds on RPV SUSY,

they are not optimized for this class of models. The second goal of this paper is to

suggest ideas for optimizing this search that may be implemented by the experiments

in the future. SSDL events in RPV SUSY have at least 6 parton-level jets. This high

2We do not include a left-handed sbottom b̃L in our simplified model even though its presence at the
same mass scale as the stop is well motivated. In MFV SUSY, the dominant sbottom decays typically
involve the top quark, b̃ ! tc or b̃ ! t�̃�, so that gluino cascades via sbottoms can still produce the
same-sign dilepton signature. Thus we expect that the bounds derived here would qualitatively apply
to most MFV SUSY models with mg̃ > mb̃ as well.

3Other signatures of RPV SUSY with light stops and gluinos have been discussed in Refs. [10, 11].
SSDL signature from resonant slepton production has been discussed in [12].
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Figure 1. 95% CL exclusion of the RPV SUSY simplified model parameter space, based on

the 4 most sensitive search regions (SRs) from the CMS SSDL+MET+b search [14] with 10.5

fb�1 of data collected at the 8 TeV LHC.

independent of the stop mass as long as an on-shell decay g̃ ! t̃t is kinematically

allowed. Note that this bound is somewhat stronger than the bound recently obtained

in Ref. [9] by recasting the ATLAS SSDL+MET+j search [21]. The di↵erence is

especially pronounced in the region of relatively small gluino/stop mass splitting, where

the ATLAS analysis loses sensitivity due to the large MET required (� 150 GeV). The

remaining di↵erences are accounted for by the slightly higher integrated luminosity of

the CMS search, as well as the additional requirement of b-tagged jets imposed by

CMS.

3 Future Searches: Optimizing for the RPV

While the current SSDL+MET+b searches already provide meaningful bounds on RPV

SUSY, they are clearly not optimized for this model. In this section, we suggest ways to

– 6 –

Recasts CMS SSDL+b-jets, 
1212.6194. Bounds again 
~800 GeV. 
!
It’s hard to hide a gluino!



Hiding Naturalness
Option 2: Lengthen decay chains such that missing 
energy is reduced. LOSP “Lightest Ordinary 
SuperPartner” decays.

2

that v-particles are produced via a Z ′ decay; some of the
v-hadrons produced in v-hadronization can then decay
back to standard model particles, via an intermediate
state Z ′ or Higgs boson. This is illustrated schemati-
cally in Fig. 1. V-hadron production in Higgs boson de-
cays was considered in [7]. Here, we will consider a dif-
ferent scenario, in which the v-hadrons are produced in
LSsP decays. In particular, as illustrated schematically
in Fig. 2, production of SM superpartners leads, through
cascade decays, to the appearance in the final state of
two LSsP’s. If the LSvP is lighter than the LSsP, then
the LSsP will typically decay to an LSvP plus one or
more v-hadrons, some of which in turn decay visibly. For
simplicity we assume in this paper both that R-parity is
conserved and that the LSvP itself is stable; if either is
violated, the phenomenology may be richer still.

SM

LEP
hidden
valley

LHC

FIG. 1: Schematic view of production and decay of v-hadrons.
While LEP was unable to penetrate the barrier separating the
sectors, LHC may easily produce v-particles. These form v-
hadrons, some of which decay to standard model particles.

Let us now consider how phenomenology of LSsP de-
cays in hidden-valley models may differ in some ways
from LSsP decays in other models. First, since the LSvP
is a v-hadron, its decay to the LSvP may be accompanied
by one or more long-lived R-parity-even v-hadrons, pos-
sibly with a substantial multiplicity. Some or all of these
v-hadrons may in turn decay to visible (but often rather
soft) particles. This decay pattern may make the decay
products of the LSsP challenging to identify. An example
of how this could occur in SM chargino-neutralino pro-
duction is shown in Fig. 3. The two LSsP’s (χ0

1) decay
to a v-quark Q and a v-squark Q̃∗; after hadronization,
a number of R-parity-even v-hadrons and two R-parity-
odd LSvP’s (R̃) emerge. Some of the R-parity-even v-
hadrons then decay to visible particles, leading to a busy
and complex event. Second, many different v-hadronic
final states may appear in LSsP decays, just as a large
number of QCD hadronic states appear in τ and B de-
cays. Acquisition of a large sample of events may there-
fore require a combination of search strategies. Finally,

since the LSsP and/or some of the v-hadrons it produces
may be long-lived and decay with highly displaced ver-
tices, discovery and study of these events may require
specialized, non-standard experimental techniques.

~

valley
hidden

LHC

LSvP

g

LSsP

SM

~q

FIG. 2: Schematic view of production and decay of SM su-
perpartners. Each superpartner decays to hard jets/leptons
and an LSsP; the LSsP then decays to an LSvP plus other
v-hadrons, some of which decay to softer jet/lepton pairs.
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FIG. 3: The production and subsequent decay of a chargino
and neutralino, showing the two LSsPs decaying to various
v-hadrons, some of which decay visibly. Invisible R-parity-
even (-odd) v-hadrons, are shown as solid (dashed) lines; in
particular, an LSvP, labelled R̃, is produced in each of the
LSsP decays.

The reverse situation — where the LSvP is heavier
than the LSsP — is typically less dramatic, but still wor-
thy of note. It leaves the bulk of SM SUSY signals un-
changed, but can in some cases produce spectacular and
challenging signals of its own. It will be discussed briefly
below.

Meanwhile, analogous statements apply, with only a
few adjustments, in other models with a conserved Z2

“Hidden Valley” (Strassler/
Zurek): divide energy among 
many particles 
!
figure from M. Strassler, 
hep-ph/0607160

Roughly divide MET by  
#(final state particles). 
See also lepton jets, etc.
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FIG. 1: Boosted gluinos that are degenerate with the bino
do not enhance the missing transverse energy when there is
no hard initial- or final-state radiation. (A) illustrates the
cancellation of the bino’s ET� . (B) shows how initial- or final-
state radiation leads to a large amount of ET� even if the
gluino is degenerate with the bino.

the search is not limited by phase space and four or
more well-separated jets are produced, as well as large
missing transverse energy. The situation is very di⇥er-
ent for light gluinos (mg̃ . 200 GeV) that are nearly
degenerate with the bino. Such light gluinos can be co-
piously produced at the Tevatron, with cross sections
O(102 pb), as compared to O(10�2 pb) for their heav-
ier counterparts (mg̃ & 400 GeV). Despite their large
production cross sections, these events are challenging
to detect because the jets from the decay are soft, with
modest amounts of missing transverse energy. Even if
the gluinos are strongly boosted, the sum of the bino
momenta will approximately cancel when reconstruct-
ing the missing transverse energy (Fig. 1A). To discover
a gluino degenerate with a bino, it is necessary to look
at events where the gluino pair is boosted by the emis-
sion of hard QCD jets (Fig. 1B). Therefore, initial-state
radiation (ISR) and final-state radiation (FSR) must be
properly accounted for.

The correct inclusion of ISR/FSR with parton show-
ering requires generating gluino events with matrix ele-
ments. We used MadGraph/MadEvent [14] to compute
processes of the form

pp̄⇤ g̃g̃ + Nj, (1)

where N = 0, 1, 2 is the multiplicity of QCD jets. The
decay of the gluino into a bino plus a quark and an anti-
quark, as well as parton showering and hadronization of
the final-state partons, was done in PYTHIA 6.4 [15].

To ensure that no double counting of events occurs
between the matrix-element multi-parton events and the
parton showers, a version of the MLM matching proce-
dure was used [16]. In this procedure, the matrix el-
ement multi-parton events and the parton showers are
constrained to occupy di⇥erent kinematical regions, sep-
arated using the k⌅ jet measure:

d2(i, j) = �R2
ij min(p2

Ti, p
2
Tj)

d2(i,beam) = p2
Ti, (2)

where �R2
ij = 2(cosh �� � cos �⇥) [17]. Matrix-

element events are generated with some minimum cut-
o⇥ d(i, j) = QME

min. After showering, the partons are
clustered into jets using the kT jet algorithm with a
QPS

min > QME
min. The event is then discarded unless all re-

sulting jets are matched to partons in the matrix-element
event, d(parton, jet) < QPS

min. For events from the high-
est multiplicity sample, extra jets softer than the soft-
est matrix-element parton are allowed. This procedure
avoids double-counting jets, and results in continuous
and smooth di⇥erential distributions for all jet observ-
ables.

The matching parameters (QME
min and QPS

min) should
be chosen resonably far below the factorization scale of
the process. For gluino production, the parameters were:

QME
min = 20 GeV and QPS

min = 30 GeV. (3)

The simulations were done using the CTEQ6L1
PDF [18] and with the renormalization and factoriza-
tion scales set to the gluino mass. The cross sections
were rescaled to the next-to-leading-order (NLO) cross
sections obtained using Prospino 2.0 [19].

Finally, we used PGS [20] for detector simulation,
with a cone jet algorithm with �R = 0.5. As a check
on this procedure, we compared our results to the signal
point given in [7] and found that they agreed to within
10%.

B. Backgrounds

The three dominant Standard Model backgrounds
that contribute to the jets plus missing energy searches
are: W±/Z0 + jets, tt̄, and QCD. There are several
smaller sources of missing energy that include single top
and di-boson production, but these make up a very small
fraction of the background and are not included in this
study.

The W±/Z0 + nj and tt̄ backgrounds were gen-
erated using MadGraph/MadEvent and then showered
and hadronized using PYTHIA. PGS was used to recon-
struct the jets. MLM matching was applied up to three
jets for the W±/Z0 background, with the parameters
QME

min = 10 GeV and QPS
min = 15 GeV. The top back-

ground was matched up to two jets with QME
min = 14 GeV

and QPS
min = 20 GeV. Events containing isolated leptons

with pT ⇥ 10 GeV were vetoed to reduce background
contributions from leptonically decaying W± bosons. To
reject cases of ET⌅ from jet energy mismeasurement, a
lower bound of 90⇤ and 50⇤ was placed on the azimuthal
angle between ET⌅ and the first and second hardest jets,
respectively. An acoplanarity cut of < 165⇤ was applied
to the two hardest jets. Because the DO⌅ analysis did
not veto hadronically decaying tau leptons, all taus were
treated as jets in this study.

2

Compressed SUSY: 
softer visible particles. 
A little artificial (tuned).

Option 3: Adjust masses so there’s little phase space for 
decays.

Rely on ISR recoil 
(“monojet”-like): 
Alwall, Le, Lisanti, 
Wacker 0803.0019

Also see LeCompte & Martin, 1105.4304: compressed spectra.

A: Can dial MET to 0 by tuning; B: still nonzero MET.
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Option 4: Decay chains with more invisible particles mean 
less visible energy. Need models w/ 3-body decays.
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FIG. 1: HT and ET6 distributions for squark pair production in the Single-Invisible and Double-Invisible scenarios. In this
example, mq̃ = 400 GeV and mLSP = 100 GeV.

A simple example of this exists already in the MSSM:
the sneutrino. Cascades must always conclude with not
only the sneutrino, but also an associated lepton. In the
case where that lepton is a neutrino, there are two in-
visible particles in every cascade. Considering the decay
of a squark in particular, we can have q̃ ! qB̃ followed
by B̃ ! ⌫̃⌫. In this case, with an on-shell Bino decay-
ing invisibly, there is no phenomenological di↵erence with
simply having a Bino LSP.

In contrast, if the Bino is o↵-shell, the squark will un-
dergo a 3-body decay, q̃ ! q⌫̃⌫, where the energy is now
shared with two invisible particles. The simplified model
that one can consider is one that simply replaces the sin-
gle invisible decay with a multi-body decay with two in-
visible particles. We refer to such a scenario and related
simplified models as “double-invisible.”

While one might think that increasing the multiplicity
of invisible particles in the final state would increase the
sensitivity of jets+MET searches, the opposite is actu-
ally true. This is because the extra invisible states di-
lute the energy of the visible particles. Since MET (ET6 )
is a vector-sum of visible energy, the increase in miss-
ing (scalar-sum) energy leads to a decrease in missing
(vector-sum) energy. We can see an example of this in
Fig. 1. These changes naturally have a significant impact
on SUSY searches.

II. EXPERIMENTAL SENSITIVITY ON
DOUBLE-INVISIBLE SIMPLIFIED MODELS

Generically, SUSY searches for colored superpartners
are optimized for standard (single-invisible) MSSM de-
cays. That typically entails hard cuts on missing energy,
hadronic energy and leading jets’ transverse momenta.
Such cuts substantially reduce backgrounds without com-
promising sensitivity to standard topologies. However,
hard requirements on kinematics can lead to a significant
reduction of signal e�ciency for double-invisible topolo-
gies, as suggested by the distributions on Fig. 1.

In this section, we will attempt to recast [28] the lim-

its from ATLAS and CMS SUSY searches to the double-
invisible scenario. As we shall see, they are significantly
weakened, by our estimates by almost an order of mag-
nitude in cross section at times.
Before we lay out our goals, we should emphasize that

our limits should not be taken as precise limits, but as
our best current estimates, and as motivations for the
experiments to properly recast these limits themselves.
Secondly, we would argue that these limits motivate new
analyses, more optimized for these kinematics. As 13
TeV data may be more challenging to apply to these low
masses, such analyses should be a high priority prior to
the next LHC run.
We generate Monte Carlo events for double-invisible

simplified models and survey their constraints from rel-
evant ATLAS and CMS searches. In order to validate
our simulation and calculation of the experimental e�-
ciencies, we first attempt to reproduce the experimental
limits quoted by the searches. We only present our esti-
mated limits for analyses we were able to validate, i.e.,
whose results we were able to reproduce to within a factor
of two.
We simulate pair-production of colored superpartners

in Madgraph 5 [29], which are decayed, showered and
hadronized in Pythia 6 [30]. For a crude simulation of
detector response, we use PGS4 [31]. For searches requir-
ing b-jets, we have modified PGS’s b-tagging e�ciency
as a function of the b-jet’s transverse momentum and ra-
pidity in order to more closely match the working point
used by the relevant searches.
For squarks and gluinos, we validated and recast the

searches in [5, 6]. The validated and recast analysis for
third generation squarks were [2–4, 7]. Other potentially
relevant searches will not be discussed in this note either
because we have found that they were not competitive
with the analyses listed above, or because we were not
able to validate their limits to a satisfactory degree. In-
stances of the former category are ↵T , razor and monojet
searches. We expect a lower sensitivity of the CMS ↵T

analysis in [32] due to its lower luminosity (11.7 fb�1)
and hard requirements on the transverse energy of the

2

Like the Hidden Valley case, 
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FIG. 3: Limits on 3rd generation squarks for the single- and double-invisible SUSY scenarios. As in Fig. 2, the (shaded) yellow
band corresponds to an ad hoc factor of two uncertainty in our estimated limits.

by an additional particle X carrying that same charge or
parity. Moreover, this additional particle must be neu-
tral. [43]

Having the appropriate final state is not enough, obvi-
ously, as the 3-body decay q̃ ! qXX̃ must be the domi-
nant decay mode. If the only R-parity-odd and kinemat-
ically open channel is XX̃, then the double-invisible phe-
nomenology is realized fairly trivially. However, this dic-
tates a somewhat specific class of spectra, with squarks
the next-to-lightest sparticles. We would be interested in
exploring whether models can exist with additional light
sparticles but retaining the double-invisible phenomenol-
ogy.

It is fairly clear that for two-body decays to be sup-
pressed, the gauginos must be heavier than the squarks.
As discussed in Sec. II, for light squarks (mq̃ ⇠ 500 GeV),
the gluino must satisfy mg̃ & 2.5 � 3 TeV. Such a sep-
aration between squarks and gluinos is most natural in
the context of Dirac gauginos, where the loop correc-
tions to the squark masses squared are “supersoft”, or
finite to all orders [35]. Moreover, in this scenario the
gluino t-channel contribution to squark pair-production
is suppressed [37, 38], further reducing limits on squark
production. Because Dirac gauginos seem to provide the
natural basic framework in which such phenomenology is
viable, we shall focus our model building e↵orts there.

We add to the MSSM Lagrangian terms

W =
1

Mmed
W↵

Y W
0
↵S + ySXX̄ +mXX̄, (1)

where hW 0
↵i = ✓D is an e↵ective D-term spurion (which

may arise from the D-term of a hidden sector U(1)0 or
from a composite vector hD̄2D↵X†Xi = ✓F 2). We as-
sume the first term provides the dominant contribution
to the Bino mass. Note that while we have included a
mass term for X, the vev for S induced after EWSB will
generate a small X mass in the absence of an explicit
mass term. Note that we use ⇠ to denote the R-parity

odd state here, but there is a choice whether that is the
scalar or fermion state (or, equivalently, whether to ex-
pand the definition of R-parity to include the X-charge).
Assuming sleptons are kinematically accessible, the

partial width for leptonic decays scales as �q̃!qll̃ /
g4Y m

5
q̃/m

4
B̃
, while the double-invisible decay scales as

�q̃!qXX̃ / g2Y y
2m3

q̃/m
2
B̃
. The di↵erent scaling is due

to the fact that the Dirac mass insertion on the Bino
propagator flips to a right-handed state that has no cou-
plings to SM leptons [39]. Consequently, the branch-
ing ratio to charged leptons will fall as Br(q̃ ! qll̃) ⇠
(g2Y m

2
q̃)/(y

2m2
B̃
) and will be su�ciently suppressed for

mB̃ & O(TeV) and y ⇠ O(1), allowing the double-
invisible phenomenology to dominate.

A. Displaced Scenarios

If squarks are the next-to-lightest R-parity odd super-
partners (X̃ being the LSP), another intriguing possibil-
ity arises, namely that of displaced decays. Since the
decay arises from a higher dimension operator, displaced
decays can be quite natural.
Rather than decaying the squarks through the Bino

portal as above, one can consider the Higgs portal, by
adding to the MSSM Lagrangian the terms

W = µHuHd + �SHuHd +mS2 + ySXX̄ +mXX̄. (2)

The decay q̃ ! qXX̃ will proceed either via mixing with
the Higgsino (and thus with an amplitude proportional
to y, �, and the fermion’s Yukawa, yf ) or via the Bino
through its Higgsino mixing, and thus proportional to
y, � and mZ/mB̃ . This raises the possibility that the
squark decay will be displaced. The phenomenology will
be similar to that in “mini-split” scenarios [14, 16], where
the gluino decays through a dipole operator to a gluon

4

Increasing the amount of missing energy significantly 
degrades the reach of current searches.

Models that do this are straightforward to construct.
D. Alves, J. Liu, N. Weiner 1312.4965
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Consider the diagrams in Fig. 1. We’ve already observed that the one at left is problematic: it’s a
renormalization of an external line, so we don’t want to include it when we compute a loop amplitude. In
shamplitude calculations, it shows up as unpleasant 1

s12...(n�1)
! � factors in the amplitudes we’re trying

to build the shamplitude out of, which we are currently removing by hand.
The other kind of bubble diagram with one gluon connected at one end is shown on the right in Fig. 1.

It has a two-particle vertex at the other end. As a result, it has the structure:
Z

d4�

(2⇡)4
✏1µ (2�µ + kµ

1 ) J(k2, . . . kj) · J(kj+1, . . . kn)

(�2 � m2)((� + k1)2 � m2)
. (1)

1

Figure 1: A schematic of the sectors involved in a general stealth model. Flavor-blind mediation
gives rise to standard MSSM soft SUSY-breaking terms, but the soft terms in the stealth sector are
suppressed relative to this. The MSSM and the stealth sector are weakly coupled, and the size of soft
terms in the stealth sector is suppressed relative to the supersymmetric mass scale of the stealth sector
by a weak-coupling factor.

as the splittings are su�ciently small and the typical multiplicity is low, SUSY can still be

hidden at colliders.)

2.2 Stealth SUSY Is Not Compressed SUSY

It is well-known that, for standard gravity-mediated MSSM spectra, collider signals are more

di�cult to observe as the masses are compressed. For instance, a gluino decaying to a bino

and two quarks, g̃ ! qq̄B̃, is most constrained if the bino is nearly massless, in which case

a significant fraction of the gluino’s energy goes into invisible momentum from the bino. As

the mass splitting is reduced, the typical missing energy in the event is reduced, and limits

from LHC searches grow weaker. Recent discussions of limits on compressed scenarios can

be found in [22]. Superficially, stealth SUSY might sound like a special case of compressed

SUSY: mass splittings are small, missing E
T

is reduced, and limits are weaker. However,

there is a crucial kinematic di↵erence, associated with the fact that in standard compressed

SUSY, the invisible particle is a heavy decay product, whereas in stealth SUSY the invisible

particle is very light. This ensures that the reduced missing E
T

of stealth SUSY is much

more robust against e↵ects like initial state radiation.

To clarify this di↵erence, we will review some basic relativistic kinematics and rules-of-

thumb for hadron collider physics. First, consider the decay of a heavy particle of mass M to

a particle of mass m = M � �M and a massless particle. In the rest frame, the momentum

– 4 –

Option 5: 
A mechanism for suppressing 
missing ET — not tuning it. 
!
J. Fan, MR, J. Ruderman 
1105.5135, 1201.4875 

Supersymmetry can hide itself!
Have a parametric limit: hidden sector SUSY breaking → 0 
and missing ET → 0.
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We present a broad class of supersymmetric models that preserve R-parity but lack missing
energy signatures. The key assumptions are a low fundamental SUSY breaking scale and new light
particles with weak-scale supersymmetric masses that feel SUSY breaking only through couplings to
the MSSM. Such particles are nearly-supersymmetric NLSPs, leading to missing ET only from soft
gravitinos. We emphasize that this scenario is natural, lacks artificial tunings to produce a squeezed
spectrum, and is consistent with gauge coupling unification. The resulting collider signals will be
jet-rich events containing false resonances that could resemble signatures of R-parity violation or
of other scenarios like technicolor. We discuss several concrete examples of the general idea, and
emphasize �jj resonances and very large numbers of b-jets as two possible discovery modes.

Introduction. The Large Hadron Collider (LHC) has
embarked on a broad campaign to discover weak scale
supersymmetry (SUSY). Many SUSY (see [1] for a re-
view) searches are now underway, hoping to discover en-
ergetic jets, leptons, and/or photons produced by the de-
cays of superpartners. A common feature of most SUSY
searches [2–5] is that they demand a large amount of
missing transverse energy as a strategy to reduce Stan-
dard Model (SM) backgrounds. This approach is moti-
vated by R-parity, which, if preserved, implies that the
lightest superpartner (LSP) is stable and contributes to
missing energy. In this paper, we introduce a new class of
SUSY models that preserve R-parity, yet lack missing en-
ergy signatures. These models of Stealth Supersymmetry
will be missed by standard SUSY searches.

Even when R-parity is preserved, the lightest SM (‘vis-
ible’ sector) superpartner (LVSP) can decay, as long as
there is a lighter state that is charged under R-parity.
This occurs, for example, when SUSY is broken at a low
scale (as in gauge mediated breaking, reviewed by [6]),
and the LVSP can decay to a gravitino, which is stable
and contributes to missing energy. Here, we consider the
additional possibility that there exists a new hidden sec-
tor of particles at the weak scale, but lighter than the
LVSP. If SUSY is broken at a low scale, it is natural for
the hidden sector to have a spectrum that is approxi-
mately supersymmetric, with a small amount of SUSY
breaking first introduced by interactions with SM fields.

The generic situation described above is all that is re-
quired to suppress missing energy in SUSY cascades. The
LVSP can decay into a hidden sector field, X̃, which we
take to be fermionic, and heavier than its scalar super-
partner, X. Then, X̃ decays to a stable gravitino and its
superpartner, X̃ ⇤ G̃X, and X, which is even under R-
parity, can decay back to SM states like jets, X ⇤ jj. Be-
cause the spectrum in the hidden sector is approximately
supersymmetric, the mass splitting is small within the X
supermultiplet, mX̃ �mX ⇥ mX̃ . Therefore, there is no

phase space for the gravitino to carry momentum: the
resulting gravitino is soft and missing energy is greatly
reduced. We illustrate the spectrum, and decay path,
in figure 1. We emphasize that this scenario requires no
special tuning of masses: the approximate degeneracy
between X and X̃ is enforced by a symmetry: supersym-
metry!
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FIG. 1. An example spectrum and decay chain for Stealth
SUSY with gluino LVSP.

A hidden sector may therefore eliminate missing en-
ergy, making the SUSY searches ine�ective at the LHC.
Moreover, the LEP and Tevatron limits on supersym-
metry mostly rely on missing energy, and do not apply
to these models. This raises the interesting possibility
of hidden SUSY: superpartners may be light enough to
have been produced copiously at LEP and the Tevatron,
yet missed, because their decays do not produce miss-
ing energy. Our proposal is morally similar, but more far
reaching, than the idea that the higgs boson may be light,
but hidden from LEP by exotic decay modes (see the ref-
erences within [7], and more recently [8, 9]). It also has a
great deal in common with SUSY models containing Hid-
den Valleys [10], though in previous discussions ⌅ET has
been suppressed by longer decay chains, rather than su-
persymmetric degenerate states. Fortunately, there are a
number of experimental handles that can be used to dis-
cover stealth supersymmetry. Possible discovery modes

FIG. 1. An example spectrum and decay chain for Stealth SUSY with gluino LVSP.

cascade, if its mass fits in the small available phase space: we can generalize to X̃ � ÑX for

a variety of light neutral fermions Ñ . Because gravitino couplings are 1/F -suppressed, such

decays are often preferred if available. Then, we need not assume low-scale SUSY breaking;

gravity mediation can also give rise to this scenario, if a suppressed SUSY-breaking splitting

between X̃ and X is natural. This calls for sequestering, an idea that already plays a key

role in such scenarios as anomaly mediation [4].

A hidden sector may therefore eliminate missing energy, making the SUSY searches inef-

fective at the LHC. Moreover, the LEP and Tevatron limits on supersymmetry mostly rely

on missing energy, and do not apply to these models. This raises the interesting possibility

of hidden SUSY: superpartners may be light enough to have been produced copiously at

LEP and the Tevatron, yet missed, because their decays do not produce missing energy.

Our proposal is morally similar, but more far reaching, than the idea that the higgs boson

may be light, but hidden from LEP by exotic decay modes (see the references within [5],

and more recently [6]). It also has a great deal in common with SUSY models containing

Hidden Valleys [7], though in previous discussions ⇥ET has been suppressed by longer decay

chains, rather than supersymmetric degenerate states. Fortunately, there are a number of

experimental handles that can be used to discover stealth supersymmetry. Possible discovery

modes that we emphasize in this paper include highly displaced vertices, triple resonances

such as �jj, and the presence of a very large number of b-jets.
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• A nearly-supersymmetric 
hidden sector (small δm) 

• Preserves R-parity: 
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Figure 2: Momentum spectra in compressed theories. At left: standard compressed SUSY, with
nearly degenerate gluino and bino and the decay chain g̃ ! qq̄B̃. The bino momentum is typically
very close to that of the gluino, and is not soft. The orange dotted curve is a simple ansatz d�/dpT /
pT (p2

T + m2)�6 to illustrate the characteristic interplay of phase space and steeply-falling parton
luminosities. At right: stealth SUSY, with the same gluino mass, now decaying in the chain g̃ ! gS̃,
S̃ ! SG̃, and S ! gg. Note that the gravitino, the invisible particle in the stealth case, has a pT

distribution resembling that of a quark in the usual compressed SUSY case, and is very soft.

complete absence of high-momentum invisible particles in the event. In particular, because

the typical transverse boost of the original parent particle (gluino, for instance) is not large,

we can estimate the boost of the stealth parent (singlino S̃, in the models of [16]) to be

� ⇠ m
g̃

/m
˜

S

. Then the lab-frame momentum of the invisible particle is

p
invis

⇠ � �M ⇠ m
g̃

m
˜

S

� m
S

m
˜

S

. (2.2)

Compared to the bino momentum in the compressed case, which was ⇠ 0.3 m
g̃

, this can

be made arbitrarily small by taking the stealth splitting small. The reduced missing E
T

in

the stealth case is much more robust, as it is independent of any amount of radiation or the
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In rest frame of decaying particle, all decay products are soft. 
In the lab frame, heavy ones get more momentum. Which are 
heavy distinguishes compressed SUSY from stealth SUSY. 
(J. Fan, MR, J. Ruderman 1201.4875)



Natural SUSY?
Stealth SUSY gives us a new set of simplified models to 
consider for how a natural stop signal could arise:STOPS IN STEALTH SUSY

Some notes on the SHu Hd model

Matthew Reece

Department of Physics, Harvard University, Cambridge, MA 02138, USA

August 18, 2013
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Figure 1: Stop decay.

One step in this project is to understand bounds on squark/higgsino/singlet and gluino/squark/higgsino/singlet
simplified models. The first part of this step is to understand the mass spectrum and decays for just higgsinos and
the singlino/singlet fields. Among the questions we want to answer are:

• What are the branching ratios for H̃ 0
1 ! S̃+Z and H̃ 0

1 ! S̃+h? (Presumably � is suppressed)?

• Does the charged Higgsino decay as H̃±!W ±⇤H̃ 0
1 , or does it prefer to decay to S̃+W ±? The former is phase-

space suppressed and the latter is suppressed by a small coupling. How small does the coupling have to be
for these to be comparable decay widths?

• Then there’s the analogous question about the heavier neutral Higgsino H̃ 0
2 .

1

In stealth SUSY models, the signal of stops might be tops + 
extra jets (possibly with weak bosons). Also 1st, 2nd gen 
squarks: many-jet events, possibly with weak bosons.

(off shell?)

(Limits already exist by recasting: J. Fan, R. Krall, D. Pinner, MR, J. Ruderman, work in progress)

It’s important to look for these scenarios at the LHC to make 
sure we’re not overlooking an important signal. 
!
Higgsinos may also be in the decay chain for tree-level 
naturalness.
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+h, Z +W±

+S

Figure 2

2.4 Stop Pair Production

2.5 Stop–Higgsino Associated Production

Interesting because the t̃Rb̄H̃� coupling is the top Yukawa yt. (refer to MR’s work in progress with Adam
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2.6 Similarities and Differences with R-Parity Violating Simplified Models
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3 Recasting Existing Searches

table of the CMS and ATLAS searches that we have used
ATLA final states with large jet multiplicity [56]
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2

LOSP Decay Chains

Not a lot of missing energy, but tops, Higgs bosons, Z 
bosons: these are not hopeless signals!

LSP: gravitino or axino. Naturally very light.



Gluino Decay Chains
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Figure 4

it would be useful to have an official recasting from the experiments themselves [61]

4 Constraints on Gluinos

5 Constraints on Stops

studies of jet multiplicity in tt̄ events by ATLAS [62] and CMS [63]

6 Constraints on Higgsinos

7 Outlook
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Simplified model. Scripts 
compute branching ratios. RH 
stop decays: roughly half  
t+neutralino, half b+chargino.

Choices for 2D plots: 
- singlino @ 100 GeV,  
- singlet @ 90 GeV 
- stop halfway between   
higgsinos and gluino



Easily Implement Simplified 
Models (Will Make Public)

BLOCK QNUMBERS 5000001 # singlino singlinobar 
      1     0  # 3 times electric charge 
      2     2  # number of spin states (2S+1) 
      3     1  # colour rep (1: singlet, 3: triplet, 6: sextet, 8: octet) 
      4     1  # Particle/Antiparticle distinction (0=own anti) 
BLOCK QNUMBERS 5000002 # singlet singletbar 
      1     0  # 3 times electric charge 
      2     1  # number of spin states (2S+1) 
      3     1  # colour rep (1: singlet, 3: triplet, 6: sextet, 8: octet) 
      4     1  # Particle/Antiparticle distinction (0=own anti) !
BLOCK MASS 
#     ID code   pole mass in GeV 
      5000001    100.0  # m(singlino) 
      5000002    90.0   # m(singlet) 
      1000022    1.0    # m(axino) 
      1000006    562.5  # m(stop) 
      1000021    925.0  # m(gluino) 
      1000023    200.0  # m(chi0_1) 
      1000025    200.0  # m(chi0_2) 
      1000024    200.0  # m(chi+_1) !
#         ID            Width 
DECAY   1000006     1.00000000E+00   # t1 decays  
     2.16000432E-01    2     1000023         6        # BR(t1 -> chi0_1 t) 
     2.16000432E-01    2     1000025         6        # BR(t1 -> chi0_2 t) 
     5.67999136E-01    2     1000024         5        # BR(t1 -> chi+_1 b) 
#         ID            Width 
DECAY   1000021     1.00000000E+00   # gluino decays  
     5.00000000E-01    2    -1000006         6        # BR(gluino -> t t1~) 
     5.00000000E-01    2     1000006        -6        # BR(gluino -> t~ t1) 
#         ID            Width 
DECAY   1000023     1.00000000E-04   # chi0_1 decays  
     1.00000000E+00    2     5000001        23        # BR(chi0_1 -> Z singlino) 
     0.00000000E+00    2     5000001        25        # BR(chi0_1 -> h singlino) 

SLHA Decay Table #         ID            Width 
DECAY   1000025     1.00000000E-04   # chi0_2 decays  
     1.00000000E+00    2     5000001        23        # BR(chi0_2 -> Z singlino) 
     0.00000000E+00    2     5000001        25        # BR(chi0_2 -> h singlino) 
#         ID            Width 
DECAY   1000024     1.00000000E-04   # chi+_1 decays  
     1.00000000E-00    2     5000001        24        # BR(chi+_1 -> w+ singlino) 
#         ID            Width 
DECAY   5000001     1.00000000E-03   # singlino decays 
#           BR         NDA      ID1       ID2 
     1.00000000E-00    2     5000002   1000022        # BR(singlino -> singlet axino) 
#         ID            Width 
DECAY   5000002     1.00000000E-03   # singlet decays 
#           BR         NDA      ID1       ID2 
     1.00000000E-00    2           5        -5        # BR(singlet -> b b~)

  // Generator 
  Pythia pythia; !
  pythia.readString("PartonLevel:ISR = on"); 
  pythia.readString("PartonLevel:FSR = on"); 
  pythia.readString("PartonLevel:MPI = on"); 
  pythia.readString("HadronLevel:Hadronize = on"); !
  // SLHA file 
  pythia.readString("SLHA:readFrom = 2"); 
  pythia.readString("SLHA:file = " + slhafile); 
  pythia.readString("SLHA:useDecayTable = true"); !
  // Initialize LHE file run 
  pythia.readString("Beams:frameType = 4"); 
  pythia.readString("Beams:LHEF = " + lhefile);

Feed to Pythia with LHE gluino 
or stop pairs; it does the rest



Stealth SUSY Bounds
Work in progress with JiJi Fan, Rebecca Krall, David Pinner, 
Josh Ruderman: how much of natural stealthy SUSY survives?

400 600 800 1000 1200
0

200

400

600

800

1000

1200

mHgéL @GeVD

m
Hcé 10
L@G

eV
D

Multijet bounds: gégé , géÆqqWcé 1
0

Determining this requires 
“recasting”: coding up searches 
and making validation plots like 
the one at left. (ATLAS 
1308.1841) 
!
Also using Drees et al. 
“CheckMATE” recasting tool 
(1312.2591).

Not many complete results to show you so far.

Validation plot!
Standard, not stealthy, gluino



Preliminarily, some regions of gluino parameter space are 
ruled out, but direct stop production in these simplified 
models is hard to bound with current searches.

3

verse momentum of the two neutrinos; the W-boson invariant mass of 80.4 GeV; and the equal-
ity of the top and antitop quark masses. The remaining ambiguities are resolved by prioritising
those event solutions with two or one b-tagged jets over solutions using jets without b-tags.
The top mass can be experimentally reconstructed in a broad range due to resolution effects.
To take this into account, the assumed top quark mass for each lepton-jet combination is varied
between 100 GeV and 300 GeV in steps of 1 GeV. Finally, among the physical solutions, the
solution of highest priority and with the most probable neutrino energies according to a simu-
lated spectrum of the neutrino energy is chosen. The kinematic reconstruction yields no valid
solution for about 12% of the events, which are excluded for further analysis.

In Fig. 1 the multiplicity distributions of the selected reconstructed jets are shown for the com-
bined dilepton event sample, compared to Standard Model predictions. Standard model back-
ground samples are simulated with MADGRAPH, POWHEG or PYTHIA, depending on the pro-
cess. The main background contributions stem from Z/g⇤ (referred to as Drell–Yan, DY in the
following), single top quark (tW-channel) and W-boson production with additional jets (W +
jets in the following). Smaller background contributions come from diboson (WW, WZ and
ZZ) and QCD multijet events. For comparison with the measured distributions, the events in
the simulated samples are normalised to an integrated luminosity of 19.6 fb�1 according to their
cross section predictions. The latter are taken from NNLO (W + jets and DY), NLO+NNLL (sin-
gle top quark tW-channel [26]), NLO (diboson [27]) and LO (QCD multijet [14]) calculations.
The tt sample is normalised to the cross section measured in situ in the same phase space. Only
tt̄ events with two leptons (electron or muon) in the final state are considered as signal. All
other tt̄ events, specifically those originating from decays via t leptons, are considered as back-
ground. The data are reasonably well described by the simulation, both for the low transverse
momentum threshold of 30 GeV and the higher thresholds of 60 GeV and 100 GeV, although
the simulation seems to predict slightly higher jet multiplicity than data. However, it has been
verified that the result of the measurement is unaffected by the small remaining differences.
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Figure 1: Reconstructed jet multiplicity distribution after event selection for all jets with trans-
verse momenta of at least 30 GeV (left), 60 GeV (middle) and of at least 100 GeV (right). The
tt sample is simulated using MADGRAPH. ”tt signal” refers to the events decaying dileptoni-
cally, ”tt other” refers to the rest of the decay modes, including tt decays into prompt t-leptons.
Notice that in all cases the event selection requires two jets with pT >30 GeV.

Direct stop bounds might come 
from jet counts in top events 
(e.g. this plot from CMS PAS 
TOP-12-041). But background 
values are iffy in the 8 or 9 jet 
bin. What’s the right error bar? 
!
Would like to see direct 
searches for top events with 
dijet resonance peaks!

Toward Stealth SUSY Stop 
Bounds



Toward Stealth SUSY Stop 
Bounds
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Figure 2. The reconstructed jet multiplicities for the jet p
T

threshold of 25 GeV, in the (a)
electron (e + jets) and (b) muon (µ + jets) channel. The data are compared to the sum of the tt̄

POWHEG+PYTHIA MC signal prediction and the background models. The shaded bands show
the total systematic and statistical uncertainties on the combined signal and background estimate.
The errors bar on the black points and the hatched area in the ratio, show the statistical uncertainty
on the data measurements.
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Figure 3. The reconstructed jet p
T

for the electron (e+ jets) channel (a) leading and (b) fifth jet
and muon channel (µ+jets) (c) leading and (d) fifth jet. The data are compared to the sum of the tt̄
POWHEG+PYTHIA MC signal prediction and the background models. The shaded bands show
the total systematic and statistical uncertainties on the combined signal and background estimate.
The error bars on the black points and the hatched area in the ratio, show the statistical uncertainty
on the data measurements.
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ATLAS 1407.0891: jet multiplicity & pT distributions in top pair 
production look very SM-like. Can use to bound new physics.



Stealth Gluino Constraints
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Search with 3 b-jets

preliminary 
work in progress



Lessons
Stops and higgsinos can still be hiding due to relatively 
small cross sections.  
!
Gluinos are very hard to hide! Bounds typically near 1 TeV 
even for “hidden” scenarios. Gluino reach will improve 
rapidly with 13 TeV data.!
!
The gluino bound already puts some strain on naturalness, 
but it’s important to fill the gaps. Stops could already be 
produced and hiding in data. Look for a wider range of 
decays!



Many Roads to Naturalness
• Stops: RPV, stealth, “just around the corner”? 

• Higgsinos: crucial for tree-level naturalness. But very hard 
to see directly if LSP. (Soft leptons + ISR jets or WBF?) 

• Gluinos: key for two-loop naturalness, and are easy to see 
(even in RPV). None so far. Should show up at 13 TeV or…? 

• Heavy Higgses: matter for tree-level naturalness. Can be 
decoupled at large tan beta, but very large tan beta is 
disfavored by b → sγ in natural theories. Not often 
discussed as a SUSY naturalness signature, but important!



Suggested Strategy
“Natural SUSY” often means a particular set of theories or 
simplified models: light stops and higgsinos, other squarks 
heavy, stable LSP. Signals involve missing energy. 
!
But many different theories can be natural. 
!
We should aim to have a catalogue of “natural SUSY 
simplified models” capturing the diverse possible signals. 
Stealth SUSY, RPV, “Hiding MET with MET,” etc. 
!
In Run 2, attention should be given to these nonminimal 
models: if we’re going to rule out (or find!) naturalness, 
important not to have too strong a theory bias.



Summary
• LHC Run 1 has put some strain on naturalness 

• Important to keep looking in the hiding places: 
squeezed regions; R-parity violation; decays with 
multiple invisible particles (“hiding MET with MET”); 
Stealth Supersymmetry models; Hidden Valleys; 
long lifetimes, displaced vertices 

• Would be good to see a suite of these “hidden 
natural SUSY” simplified models constrained in 
CMS and ATLAS publications



If time allows:



Natural SUSY and b→sγ
Stops and higgsinos, key to naturalness, give a loop 
correction to b→sγ.

running in the loop and one with gluinos and sbottoms, are shown in Fig. [?]. From the loop diagram containing
stops and higgsinos, we have a correction to the matrix element scaling like:

M t̃;h̃(b! s�)⇠ Atµ

m2
t̃

tan� . (4)

The measurement of the rate for b! s� puts an upper bound on this correction, which we would like to interpret
as an upper bound on tan� . Such a bound would be very weak if the coefficient of tan� could be very small.
Thus, we would like to have a lower bound on the factor Atµ

m2
t̃

in front of tan� . Fortuitously, there is an argument

for each parameter that goes in the correct direction:

• mt̃ cannot be too large because stops are needed for one-loop naturalness (canceling the top loop diver-
gence in m2

Hu
).

• µ cannot be too small because we have a direct constraint from LEP on the possibility of light charged
particles; hence µ ⇠> 100 GeV [21–24]. The LHC will potentially strengthen this constraint, although even
raising the bound to 150 or 200 GeV will require a large luminosity at 14 TeV [25–28].

• Finally, At cannot be too small because it receives loop corrections proportional to the gluino mass M3. If
it takes a value much smaller than these loop corrections, this would be a new source of fine-tuning.

This tells us that naturalness, used in conjunction with the measurement of b! s� and experimental bounds on
the gluino mass, implies an upper bound on tan� . We should now evaluate what this bound is, numerically.

Bounds on the gluino mass are strong even in scenarios with nonstandard decays [29]

⇥µ

⇥At

Hu

bL sR

�

t̃R t̃ L

H̃�u H̃�d
⇥M3

⇥ybµ

Hu

bL sR

�
b̃L b̃R

g̃ g̃

(5)

3.1 Natural choices for At

Th‘e simplest estimate for the smallest natural choice of At , assuming running from a relatively low scale ⇤, is

At ⇡ � 2
3⇡2 g2

3 M3 log
⇤
M3
⇡ �190 GeV
✓

M3

1 TeV

◆
log10

⇤
M3

. (6)

If we run from a higher scale, we can do a somewhat more careful estimate by resumming large logarithms.
What we have called At is really at/yt , where at is the coefficient of the three-scalar operator in the La-

grangian. Keeping only the one-loop terms involving g3 or yt , the RG evolution of at is related to that of the
gluino mass by the equation (e.g. [30])

d
d logµ

at =
1

16⇡2

✓✓
18y2

t �
16
3

g2
3

◆
at +

32
3

yt g2
3 M3

◆
. (7)

3

Figure 5: Diagrams contributing to the b ! s� process in natural SUSY theories. The higgsino has
flavor violating couplings through the CKM matrix just as the W boson does, so the stop–higgsino loop
at left has the same flavor factors as the SM amplitude.

this constraint, although even raising the bound to 150 or 200 GeV will require a large
luminosity at 14 TeV [54–57].

• Finally, At cannot be too small because it receives loop corrections proportional to the
gluino mass M3. If it takes a value much smaller than these loop corrections, this would
be a new source of fine-tuning. Bounds on the gluino mass are in the vicinity of 1 TeV
for a variety of scenarios, both with traditional missing momentum signatures and in
cases where the gluino decays to multiple jets [58–62], so it is reasonable to think that
At should not be smaller than the radiative contribution from a 1 TeV gluino.

This tells us that naturalness, used in conjunction with the measurement of b! s� and experi-
mental bounds on the gluino mass, implies an upper bound on tan� . We should now evaluate
what this bound is, numerically. The full formula is given in a convenient form in ref. [63]
(using the results of ref. [64]) and we will use it in the numerics, but first to get some intu-
ition we will give some approximations that indicate how the correction depends on the soft

parameters. We work in the limit µ2⌧ m2
Q3

, m2
uc

3
, introducing the notation mt̃ ⌘

⇣
mQ3

muc
3

⌘1/2

for the geometric mean of the two stop soft masses and r = mQ3
/muc

3
for their ratio. Then if we

assume that only the stop-higgsino loop gives a significant contribution, the general formula
approximately reduces to:

Br(B! Xs�)
Br(B! Xs�)SM

� 1 ⇡ 2.55 tan�
Atµm2

t

mt̃
4

ñ
log

mt̃

µ
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1+ 2.1

r2+ 1
r

µ2

mt̃
2

å
� 0.52+

1+ r2

2� 2r2 log r

� µ
2

mt̃
2

Ç
0.76

3(r2+ 1)
4r

+ 2.1
r4+ 1

2r(r2� 1)
ln(r)

å
. . .

ô
, (18)

where omitted terms are subleading in tan� or in µ2/mt̃
2.

There are other loop corrections to b ! s�, but they depend on masses that can natu-
rally be heavy. The gluino loop shown at right in Fig. 5 can feel flavor violation through the
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Figure 4: Contours of fine tuning of EWSB when adding a new
��Hu ·Hd

��2 coupling ��5. Most of the
parameter space is already fine tuned. The purple contours denote the ��5 value needed to get a
125 GeV SM-like Higgs mass. In the black region it is difficult to rely on the perturbative calculation,
since it demands ��5 > 2.

of Hu and thus are enhanced by a factor of tan� relative to the Standard Model amplitude [43–
49]. Two of these diagrams, one with stops and higgsinos running in the loop and one with
gluinos and sbottoms, are shown in Fig. 5. (Other diagrams involve a wino or bino running in
the loop; we will ignore these terms, which are small corrections in natural parts of parameter
space.) From the loop diagram containing stops and higgsinos, we have a correction to the
matrix element scaling like:

M t̃;h̃(b! s�)⇠ m2
t

Atµ

m4
t̃

tan� . (17)

The measurement of the rate for b ! s� puts an upper bound on this correction, which we
would like to interpret as an upper bound on tan� . Such a bound would be very weak if the
coefficient of tan� could be very small. Thus, we would like to have a lower bound on the
factor Atµ

m4
t̃

in front of tan� . Fortuitously, there is an argument for each parameter that goes in
the correct direction:

• mt̃ cannot be too large because stops are needed for one-loop naturalness (canceling the
top loop divergence in m2

Hu
).

• µ cannot be too small because we have a direct constraint from LEP on the possibility of
light charged particles; hence µ ⇠> 100 GeV [50–53]. The LHC will potentially strengthen

10

A. Katz, M. Reece, A. Sajjad 1406.1172

Higgsino mass μ can’t be too 
small (LEP direct constraint)  
!
At can’t be too small (RG 
prop. to gluino mass) 
!
Stop mass not too big 
(naturalness) 
!
So: coefficient not too small!



Natural SUSY and b→sγ
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Figure 8: Constraints arising from b! s�. Here we have fixed µ= 100 GeV (and |M3|= 1.3 TeV) and
plot blue solid lines for contours of the largest allowed tan� as a function of the stop mixing parameter
At and the stop soft mass parameter. The shaded regions are disfavored by naturalness: the purple
regions at small At involve tuning �At

= 5 (lighter region) and 10 (darker region). The red shaded
regions correspond to � t̃ = 5 (lighter) and 10 (darker) tuning in m2

Hu
from the stop loop contribution.

The region above the black dashed lines has combined tuning � > 10. The plots with different signs of
M3 have different tuning measures because the loop-generated At always has the opposite sign to M3.

whenever M3At < 0, which is driven by the fact that �At
prefers At to be either near its

loop-generated value or much bigger.
The most optimistic region of parameter space has µAt > 0 (so that the new physics contri-

bution constructively interferes with the SM and improves agreement with data) and At M3 < 0
(so that the trilinear can be mostly generated from the RG). From the figure, we can see that
this marginally allows tan� ⇡ 28 with a combined tuning� ⇡ 10 coming almost entirely from
the stop mass mt̃ ⇡ 600 GeV. The plots make it clear that allowing tan� > 30 will require
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In natural theories, it’s hard to get tan beta to be large.



Bounding tan beta with 
b→sγ
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Figure 9: Constraints arising from b! s�. The upper plot is just like the lower panel of Fig. 8, except
that we set the supersymmetry mediation scale ⇤ to 30 TeV instead of 10 TeV. The extra running means
that increased tuning is required: both �At

and � t̃ are larger. As a result, requiring � < 10 now
imposes a stronger constraint, tan� < 9.5. In the lower plot we show how this constraint evolves with
the mediation scale, allowing for stop-sector tuning by a factor of either 10 (solid orange line) or 30
(dashed orange line). Already for a 100 TeV mediation scale the constraint is tan� < 3.4 if we require
� < 10.

either quite heavy stops—out of the range that can be considered truly natural—or a cancela-
tion in At , or both. We think that it is very conservative to conclude that generic natural SUSY
requires tan� < 30.

In fact, we are usually understating the required cancelation in At , because most reasonable
models will run from a higher UV scale and generate values of At a factor of 2 or more larger
than we have considered. Even a slightly larger amount of running produces a significantly
stronger conclusion, as we illustrate in Fig. 9. Beginning the RGE at 30 TeV instead of 10 TeV
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In natural theories, it’s hard to get tan beta to be large.



SUSY Heavy Higgs Bosons

tion in eq. (2)), the two EWSB equations become

M2
U = b cot� +

1
2

m2
Z cos(2�)� ��1

2
v2 sin2� ,

M2
D = b tan� � 1

2
m2

Z cos(2�). (9)

The new quartic term shifts the mass of the light scalar Higgs eigenstate. The full analytic
formula is not very enlightening, but in the �⌧ 1, mA� mZ limit we can expand it as:

�m2
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8
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Alternatively, for any tan� we can expand the mass formula for m2
A� m2

Z as
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Z/m

4
A).(11)

We show the contours of the lifted Higgs mass as a function of ��1 and tan� in Fig 1.
As we expect for a term involving only the up-type Higgs, the new quartic is more efficient

at raising the light Higgs boson mass to 125 GeV in the limit of large tan� . Furthermore,
because the MSSM tree-level contribution is suppressed at small tan� , it becomes even more
difficult to obtain ��1 large enough in that case. This is illustrated by the contours of constant
Higgs mass in the

�
tan� ,��1
�

plane in Figure 1.
To evaluate the tuning, we first take a derivative with respect to M2

d . We use the fact that
b = m2

A sin� cos� (a result that is unchanged from the MSSM case) and thus that M2
d can be

written in terms of the physical parameters m2
Z , m2

A, and tan� as M2
d = m2

A sin2�� 1
2
m2

Z cos(2�).
The resulting expression is:
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This expression is not very enlightening on its own, but the main question we are interested
in is: if we allow at most a given amount of fine-tuning, can we infer a bound on the physical
masses of heavy particles? For this question, it is reasonable to expand the tuning measure at
large m2

A. We will also assume that the value of ��1 is chosen to fix the Higgs mass m2
h as in

eq. (11). The result is:
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Figure 2: Contours of fine tuning of EWSB with an extra quartic |Hu|4. The exact value of �1 is
determined by demanding mh = 125 GeV. The shaded green region is directly excluded by the CMS
search for H ! ⌧+⌧� decay (see text for explanation).

natural parameter space may require future colliders to probe, in much of the parameter space
the heavy Higgs bosons should be accessible at the LHC. Measurements of the light Higgs bo-
son decay modes at the 14 TeV LHC with 300 fb�1 of data will probe the range of mA up to
about 450 GeV [40]. Heavier masses can be probed only by direct searches or higher precision
measurements at the high luminosity LHC or especially future e+e� colliders.

2.3 The �5

��Hu ·Hd

��2 extension

This is the quartic extension that arises in the NMSSM or �SUSY. It does not change the
pseudoscalar mass relation m2

A = 2b/ sin(2�). In this case, we find that the light Higgs mass
is corrected as:

m2
h = m2

Z cos2(2�) +��5v2 sin2(2�)�
Ä

m2
Z ���5v2
ä2

sin2(4�)

4m2
A

+ O (m6
Z/m

4
A). (14)

In this case moderate values of tan� are most effective for raising the Higgs mass, because the
correction term involves vd and is suppressed in the large tan� limit. In fact, it is impossible
to get mh = 125 GeV with large tan� . On top of that, we often need large, almost non-
perturbative values of ��5 in order to get the correct value of the SM-like Higgs mass.

8

Barring fine-tuning or very 
low-scale mediation of SUSY 
breaking, the bound from 
b→sγ leads us to expect 
heavy Higgs bosons (H0, A0, 
H+/-) near the TeV scale. 
Could be out of LHC reach, 
but a large chunk of the 
natural parameter space is 
in reach!



More about R-parity violation
RPV has received a lot of attention recently in the context of 
natural SUSY (hiding superpartners from the LHC). 
!
I think we should also be thinking about RPV in the unnatural, 
mini-split SUSY context. Removes the wino DM problem. 
Produce winos, which decay. How do they decay? 
!
WRPV = ucdcdc has gotten a lot of recent attention (e.g. MFV 
RPV). Good for hiding from LHC searches (multi-jet signals). 
!
I want to comment on an option that received less recent 
attention: bilinear RPV, with 2-body wino decays at the LHC.
(for older work: see hep-ph/9612447 by Mukhopadyaya and Roy; hep-ph/0410242 by Chun and Park; also, 
for 3-body decays in bilinear RPV, Graham, Kaplan, Rajendran, Saraswat, 1204.6038)



Bilinear RPV
If we violate R-parity by violating lepton number, can add

the bilinear term can be rotated away, but in general still have 
bilinear soft terms remaining:

LLNV � �
⇣
BLiµµL̃iHu + m̃2

Hd,Li
L̃iH

†
d + h.c.

⌘

Once the Higgs gets a VEV, these terms become sneutrino 
tadpoles, so the sneutrino gets a VEV:

In the mini-split context would guess BLiµµ, m̃2
Hd,Li

⇠ ✏m2
3/2

h⌫̃i ⇠ ✏v

WLNV =
1

2
�ijkLiLjEk + �0

ijkLiQjDk + ✏iµLiHu



Sneutrino VEVs
The sneutrino VEV has several interesting consequences. 
Gauginos mix with leptons:

m3/2, mscalar,µ⇠ 10 TeV
l ↵

4⇡
mh, mgaugino⇠ 100 GeV

Unnatural Mini-Split SUSY

m3/2, mscalar,µ, mh⇠ 100 GeV
l ↵

4⇡
mgaugino⇠ 1 GeV

Natural Mini-Split SUSY

Figure 8: Hmm
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6

If winos are the LSPs, this will give them new decay modes:

W̃ 0 ! Z⌫,W±`⌥

W̃± ! Z`±,W±⌫

This would be a worthwhile search channel at the LHC. 
(Probably the lepton is mostly tau? Need flavor model.)



Bilinear RPV
Also get a contribution to neutrino masses:

m3/2, mscalar,µ⇠ 10 TeV
l ↵

4⇡
mh, mgaugino⇠ 100 GeV

Unnatural Mini-Split SUSY

m3/2, mscalar,µ, mh⇠ 100 GeV
l ↵

4⇡
mgaugino⇠ 1 GeV

Natural Mini-Split SUSY

Figure 8: Hmm
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This implies an upper bound               .✏ ⇠ 10�6

This gives a lower bound on the lifetime of the two-body wino 
decays, ~ 100 microns.* So should look for 

W̃ 0 ! Z⌫,W±`⌥

W̃± ! Z`±,W±⌫

with displaced vertices! (Possibly 
macroscopically displaced; 
standard lepton ID may fail.)

* Disclaimer: I haven’t plugged in all order-one factors; hope to study this more carefully soon.


