PROOF-based services

<u>G. Ganis</u>, F. Rademakers, CERN, PH-SFT

WLCG 2009 Data-Taking Readiness Planning Workshop CERN, 14 Nov 2008

- PROOF reminder
- Performance considerations
- Installations
 - Setup and examples
 - Dataset handling
- Summary

ROOF – Parallel ROOT Facility

Designed for interactive processing of ideally parallel tasks at Tier 2 / Tier 3 facilities and many-core desktops

- Parallel coordination of distributed ROOT sessions
 - Transparent: extension of the local shell
 - Scalable: small serial overhead
- Multi-Process Parallelism
 - Easy adaptation to broad range of setups
 - Less requirements on user code
- Process the data where they are, if possible
 - Outputs much smaller than inputs
 - Minimize data transfers
- Dynamic load balancing
 - Minimize wasted cycles

Traditional approach

Traditional approach: sensitivity to tails

Last sub-job determines the execution time

- Basically a Landau distribution (see L. Betev talk)
- Example:

Reference of the series of the

Mathematical Impact on existing frameworks

How difficult is to adapt a framework to PROOF?

- PROOF runs the event loop and opens the files
 - Possible interference with frameworks
- Modular approach to analysis algorithms and input / output handling
 - Allows to hide TSelector behind the scene
 - Examples
 - 6 AliAnalysisTask (ALICE)
 - Tree-Analysis-Module (Phobos)
 - © TFWLiteSelector template (CMS)
- TSelector framework is flexible
 - Can be used just to schedule tasks with file-level granularity
 - ATLAS interest
- Smooth transition typically possible

Real Hardware performance considerations

- Typical resource consuming end-user analysis
 - □ Data mining / processing ⇒ ~ I/O bound
 - □ Fits, {full,fast,toy}-simulations for systematic studies, ...
 ⇒ ~ CPU bound
- Today typical hardware
 - Many-cores and reasonably large RAM
 - 4 or 8 (⇒ 64 next year?), 2 GB / core
 - Standard HDD
- Most likely the bottleneck is I/O
 - HDDs serve well ~2÷3 cores
 - Need performant I/O systems for data processing
 - Dedicated multi-HDD (HW or SW RAID)
 - Solid State Disks

Image Almost perfect scalability for CPU-bound tasks or I/O bound tasks with independent disk controllers

8 core machine

Courtesy of Neng Xu, Wisconsin

- 2 cores vs 1 disk seems to be a reasonable HW ratio
- Multi-disk systems allow to go beyond this limit
- Optimized use of memory caching techniques can also help

ATLAS tests using Solid State Disks (SSD)

Courtesy of S. Panitkin, BNL

SSD holds clear speed advantage

- ~10 times faster in concurrent read scenario
- Price starts becoming affordable

- [®] Higgs 4-lepton analysis
- ⁶ 50 nodes, AMD 64bit 4x, 4 GB RAM
- ⁶ 4.5 M events, 68 GB
- ⁶ 845 files
- [©] Analysis include TMinuit fit
- [©] Single session
 - □ 1.5 kEvt/s \Rightarrow 50 min
- ⁶ PROOF 1 user (80 wrks)
 - □ 100 kEvt/s \Rightarrow ~1 min
- ⁶ PROOF 8 users (64 wrks)
 □ 40 kEvt/s ⇒ ~2.5 min

ALICE

<u>CERN Analysis Facility</u>

- 112 cores, 35 TB
 - Target: 500 cores, 110 TB
- Prompt analysis of selected data, calibration, alignment, fast simulation
- 5-10 concurrent users
 - ~80 users registered

GSI Analysis Facility, Darmstadt

- 160 cores, 150 TB Lustre
- Data analysis, TPC calibration
- 5-10 users
- Performance example:
 - ~1.4 TB processed in ~20 min

ATLAS

Wisconsin

- 200 cores, 100 TB, RAID5
- Data analysis (Higgs searches)
- I/O perfomance tests w/ multi-RAID
- PROOF-Condor integration
- ~20 registered users

BNL

Users: 40 cores, 20 TB HDD
Test: 72 cores, 25 TB HDD, 192 GB SSD
I/O perfomance tests with SSD, RAID
Tests of PROOF cluster federation
~25 registered users

Test farms at LMU, UA Madrid, UTA

PROOF is part of ROOT

No additional package

PROOF service runs as an XROOTD plug-in

- Same XROOTD can be used to serve files and PROOF sessions
 - Port 1094 for data serving, port 1093 for PROOF

Configuration files

- Dedicated part in the XROOTD config file
 - Can be the same physical file for all nodes
- File defining the role of the nodes (proof.conf)
- File defining the groups of users and their properties
 - Priorities, quotas, ...

- ROOT versions installed via RPM
- Relevant files on AFS
 - Configuration files
 - XROOTD MPS scripts to populate the local pool space

ALICE-specific RPM to setup a machine

- Setup init.d scripts
 - xrootd, cmsd, monalisa
- Configure relevant directories
 - Local data pools
 - /pool/alien, /pool/castor
 - Local dataset management
 - /pool/dataset/<group>/<user>
 - User sandboxes
 - /pool/proofbox/<user>

Cluster managed using set of scripts based on 'wassh'

- \$ cafpro installrpm 5-21-05-alice
- \$ cafpro restart
- User Support & bugs
 - ROOT Savannah
 - Dedicated mailing list
 - alice-project-analysis-task-force@cern.ch

Courtesy of J.F Grosse-Oetringhaus, CERN

- Dataset: named collection of files
- Dataset manager
 - Handle datasets
 - Register a new dataset or remove an existing one
 - Retrieve information
 - Verify the availability of the files
 - Basic quota management
- Information sources: different backends
 - Dedicated ROOT files on the master
 - E.g. created from the AliEn catalog (ALICE)
 - Experiment dataset databases
 - E.g. SQL based (ATLAS)

Dataset handling at ALICE CAF

Realization of PROOF in two tiers optimized for multi-cores

- The client starts / controls directly the workers ($\# \equiv N_{CPU}$)
 - ® No need of daemons, works out of the box
 - © Communication goes via UNIX sockets for optimal resource usage
- Very efficient: very good scalability for CPU-bound analysis
- Allows to transparently exploit the additional CPU power for a ROOT-based analysis

- PROOF technology is a viable solution for interactive end-user analysis at Tier3 facilities
 - Code development with large statistics
 - CPU intensive systematic studies
- Provides straight-forward extension of ROOT-based analysis of distributed resources
 - Comes with ROOT
 - No additional dependencies
- Lot of constructive feedback from ALICE / ATLAS users
 - Realistic use-cases
 - New functionality (e.g. dataset management)