

EDMS NO.	REV.	VALIDITY
1371096	0.0	DRAFT

CONCEPTUAL SPECIFICATION

WARM STRIPLINE BPMS FOR HL-LHC

[LHC-BPMSQW]

Equipment/system description

This specification concerns the HL-LHC beam position monitor (BPM) in front of the Q1a. This will be a warm stripline BPM measuring the position of both beams in both planes.

Layout Versions	LHC sectors concerned	CDD Drawings root names (drawing storage):
V 1.0	LSS1, LSS5	LHC BPMSQW to be created by S. Chemli

TRACEABILITY

Project Engineer in charge of the equipment T. Lefevre	WP Leader in charge of the equipment R. Jones					
Committee/Verification Role	Decision	Date				
PLC-HLTC/ Performance and technical parameters	Rejected/Accepted	2014-07-08				
Configuration-Integration / Configuraration, installation and interface parameters	Rejected/Accepted	20YY-MM-DD				
TC / Cost and schedule	Rejected/Accepted	20YY-MM-DD				
Final decision by PL	Rejected/Accepted/Accepted pending (integration studies,)	20YY-MM-DD				

Distribution: N. Surname (DEP/GRP) (in alphabetical order) can also include reference to committees

Rev. No.	Date	Description of Changes (major changes only, minor changes in EDMS)
1.0	2014-06-06	Creation Date
	•	

This document is uncontrolled when printed. Check the EDMS to verify that this is the correct version before use

(EDMS NO.	REV.	VALIDITY
	1371096	0.2	DRAFT

1 CONCEPTUAL DESCRIPTION

1.1 Scope

This specification concerns the HL-LHC beam position monitor (BPM) in front of the Q1a. This will be a warm stripline BPM measuring the position of both beams in both planes.

1.2 Benefit or objective for the HL-LHC machine performance

This BPM is essential for maintaining a stable orbit at the IP, and could be used for continuous luminosity optimisation.

1.3 Equipment performance objectives

The system should be able to measure the beam position for each beam with a resolution of 1um and a medium term (fill to fill) reproducibility of 10um.

\bigcap	EDMS NO.	REV.	VALIDITY
	1371096	0.2	DRAFT

TECHNICAL ANNEXES

2 PRELIMINARY TECHNICAL PARAMETERS

Assumptions 2.1

It is currently assumed that this detector will be based on a stripline BPM and that it does not require tungsten shielding.

2.2 **Equipment Technical parameters**

The BPM is of a stripline type with the provisional parameters listed in table 1.

· · ·									
Characteristics	Units	Value							
Aperture	mm	Adapted to beam screen aperture.							
Total Length	mm	285 (minimum)							
Stripline orientation	degrees	90							

Table 1: Equipment parameters

The length of the BPM is not linked to aperture. The resolution of the system typically scales with decreasing aperture, a larger aperture therefore implies lower resolution.

2.3 **Operational parameters and conditions**

The signal will be extracted using 8 semi-rigid, radiation resistant coaxial cables per BPM, to a patch panel located in a lower readiation area on the tunnel wall. The length of these cables shall be less tha 5m. Eight standard 1/2" coaxial cables will connect the patch panel to the UA/UJ.

Technical and Installation services required 2.4

Table 2: Technical services							
Domain	Requirement						
Electricity & Power	 Eight ½" coaxial cables per BPM connecting the patch panel on the tunnel wall to beam instrumentation racks in the UA/UJ Additional fibre-optic links (4 fibres for each side of the LSS) from the UA/UJ to the surface (SR) to complement the existing BPM links. 						
Vacuum	These BPMs will be an integral part of the beam vacuum system						
	Table 2: Installation convisos						

Table 3: Installation services

Domain	Requirement
Alignment	These BPMs will need to be accurately aligned with respect to the Q1a.

Reliability, availability, maintainability 2.5

As part of the beam position system of the LHC these components need to be highly reliable and maintenance free. The effect on luminosity optimization and the IR orbit of losing this BPMs is dramatic.

1371096	0.2	DRAFT
EDMS NO.	REV.	VALIDITY

2.6 Radiation resistance

The materials used need to able to withstand irradiation up to several MGy.

2.7 List of units to be installed and spares policy

To be installed left and right of IP1 and IP5.

• 1 located in fonrt of the Q1a cryostat

A total of 4 such BPMs will be installed with 2 spares foreseen for this type of BPM assembly.

3 PRELIMINARY CONFIGURATION AND INSTALLATION CONSTRAINTS

3.1 Longitudinal range

The ideal longitudinal location should correspond as closely as possible to $(1.87 + N \times 3.743)$ m from the IP where N is an integer. Any deviation from this will diminish the possibility of the system to distinguish one beam from the other.

3.2 Volume

Volume is ?.

3.3 Installation/Dismantling

Needs integration into the TAS to Q1a vacuum sector.

4 PRELIMINARY INTERFACE PARAMETERS

4.1 Interfaces with equipment

Interface with the vacuum beam pipe between TAS and Q1a cryostats.

5 COST & SCHEDULE

5.1 Cost evaluation

Baseline APT (budget code : 64063 – HL-LHC Interaction Region BPMs).

5.2 Approximated Schedule

Simplified schedule by years

(EDMS NO.	REV.	VALIDITY
	1371096	0.2	DRAFT

Table 4: Simplified Schedule																
Phase	20	14	20	15	20	16	20	17	2018	2019	2020	2021	2022	2023	2024	2025
Engineering specification																
Design & Integration																
Procurement																
Assembly & Verification																
Installation – Commissioning																

5.3 Schedule and cost dependencies

No particular constraints to be noted.

6 TECHNICAL REFERENCE DOCUMENTS

• To be provided

7 APPROVAL PROCESS COMMENTS FOR VERSION X.0 OF THE CONCEPTUAL SPECIFICATION

7.1 PLC-HLTC / Performance and technical parameters Verification

Comments or references to approval notes. In case of rejection detailed reasoning

7.2 Configuration-Integration / Configuraration, installation and interface parameters Verification

Comments or references to approval notes. In case of rejection detailed reasoning

7.3 TC / Cost and schedule Verification

Comments or references to approval notes. In case of rejection detailed reasoning

7.4 Final decision by PL

Comments or references to approval notes. In case of rejection detailed reasoning