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Probe types and anatomy
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Probe types and anatomy

e The main families of probes are:

— Linear
e Generally employed for superficial parts at high frequency

— Convex
e Generally employed for abdominal scans (low frequency)

— Phased array

e Used in cardiac imaging
— Specialized

e Endocavitary

— Transrectal, Transvaginal
— Transesophageal

e Surgical
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Probe types and anatomy

e There is a multitude of available probes,
but they all share some common
properties.

e They are made of piezoelectric material
e They comprise many active elements

e Various devices for impedance matching
and focalisation are present
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Piezoelectricity

— When an electric field is applied it changes
dimensions

— When strained an electric field is generated

wikipedia



Transducers

e Are made by piezoelectric material
elements, often lined up in arrays

e Every element is sandwiched between
an absorbing material layer (backing)
and an impedence matching layer

e The acoustic impedance of tissues is
close to 1.5 MRayl while that of the
piezoelectric material is about 20-30
MRayl



Transducer Structure
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Transducer array

ground lead

.......

signal lsad #1
signal lead #2

signal lead ¥3
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Finite Elements Modeling

e Most diffused commercial packages:

— PZFlex (Weidlinger Associates Inc.)

o www.wai.com/AppliedScience/Software/Pzflex/i
ndex-pz.html

— ANSYS (ANSYS Inc.)

e WWW.ANSYS.com

— ATILA (Cedrat or Magsoft Corp.)

o www.cedrat-grenoble.fr
o www.atilafm.com




Radiation Diagram
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Diffraction
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Diffraction
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Diffraction

e Rayleigh-Sommerfeld
formulation




Diffraction

e In rectangular coordinates cos(68)=—
and, as a consequence: For

0 (x:3) =1 U (6 22 g

r01



Fresnel approximation
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Propagation as a convolution
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Fresnel diffraction integral
ey

e Factoring the term e ??

outside of the integral we get:

27

U(x,y)=—¢" )”{U (Em)e="" }e%x5+y")d§dn

showing the propagation effect as a
quadratic factor applied to the Fourier
transform of the field at the aperture



Focusing and beamforming

e Diffraction introduces
the need for focusing
and beamforming in
the elevation and
lateral directions



Focusing and beamforming




Focusing and beamforming
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Figure 1.1: A conceptual diagram of phased array beamforming. (Top) Apprepriately delayed
pulses are transmitted from an arrav of piezoelectric elements to achieve steering and focusing at
the point of interest. [ For simplicity, only focusing delsys are shown here.] (Bottom) The echoes
returning are likewise delayed before they are summed together to form a strong erho signal from
the region of nrerasr.
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Focusing and beamforming
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Figure 1.3: The acoustic pulse from a typical array (7.5 MHz, 60% bandwidth, 128 elements of
width equal to the wavelength), shown at the acoustic focus. The pulse is displayed as a map of
pressure amplitude and 1s traveling in the positive direction along axial dimension.
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Baemforming - f-number
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Beamforming - low f-number

e a low f/ number
gives a great
sharpness but a
limited depth of field

e good for receiving
but not to illuminate
the scene




Beamforming - high f-number

e a high f/ number
gives a good depth
of field at the
sacrifice of
sharpness

e good for
transmitting




Dynamic focus
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Dynamic focus

e The ideal solution is to employ a
moderate f/ number in transmit and to
receive dynamically changing a low f/
number focus, tracking the region
where the echo might come from

e If frame rate is not an issue multi-zone
focusing can be used



Elevation beamforming

e Elevation focusing is generally done by
means of a fixed focus mechanical lens
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Elevation beamforming

e But can also be done electronically to
get a better depth of field
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Beamforming
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Beamforming
Acoustic Field Model
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Field II: httD://estw.it.dtu.dk/~iai/ﬁéld/

J.A. Jensen and N. B. Svendsen, “‘Calculation of pressure fields
from arbitrarily shaped, apodized, and excited ultrasound transducers,”

IEEE Trans. Ultrason., Ferroelec., Freq. Contr., 39, pp. 262-267, 1992,
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Grating Lobes

Grating lobes can be
easily explained in the
spatial frequency
domain
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Radiation Diagram

- radiation pattern
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Array types
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Annular array
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Array Types

e To each application its own specialized
transducer:

e Abdominal

e Cardiac

e Vascular

o Small parts
e Endocavitary
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Abdominal

e Requisites:
— Deep penetration
— Wide field of view
— Moderate footprint

e Solution:
— Low frequency
— Convex probe




Cardiac

e Requisites:
— Good penetration
— Wide field of view
— Very small footprint

e Solution:
— Low frequency
— Phased array probe




Vascular

e Requisites:
— (Good resolution
— Moderate penetration
— Doppler flow imaging

e Solution:
— Medium frequency
— Linear probe
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Small parts

e Requisites:
— Very Good resolution
— Moderate penetration

e Solution:
— High frequency
— Linear probe




Technological aspects

e Safety and ergonomic aspects regulate the
physical characteristics of the probe:
— Waterproof
— Appropriate materials (sterilization, cleaning)
— Electrical safety
— Weight
— Cable compliance
— Footprint
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Typical array construction




Fabrication process

ceramic glued to backing

cut
W W

Matching layers applied

Kerf filled
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Fabrication process
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Fabrication process
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Fabrication process
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