

Hypothetical Lx.10 Luminosity Evolution with SLHC

Physics Context in 2011 - 2015

- New physics expected in TeV energy range
 - Higgs, supersymmetry, extra dimensions, ...?
- Initial LHC data should indicate what physics, and at which energy scale
- Two possible scenarios:
 - New physics at a low energy scale
 - But perhaps more at higher energies (e.g., supersymmetry)
 SLHC will probe in more detail
 - New physics threshold at higher energy scale

SLHC only available tool

Possible Physics Scenarios in 2011

Accelerator Context in 2011 - 2015

ILC may be ready for approval, BUT:

From R. Orbach (DoE Undersecretary) remarks to HEPAP, Febr 22 2007:

"Even assuming a positive decision to build an ILC, the schedules will almost certainly be lengthier than the optimistic projections. Completing the R&D and engineering design, negotiating an international structure, selecting a site, obtaining firm financial commitments, and building the machine could take us well into the **mid-2020s**, **if not later**."

- CLIC feasibility may be demonstrated, BUT
- Neither project may finished within another

SLHC may be the only game in town for a long time!

Possible LHC Upgrade Options

- Upgrade of Linac
 - More intense beam @ 160 MeV
- New LHC insertions:
 - Luminosity \rightarrow 2.10³⁴ cm⁻²s⁻¹
- Superconducting Proton Linac
 - Low power or few MW @ few GeV?
- Replace PS
 - By PS2 @ 50 GeV?
- New LHC insertions:
 - Luminosity $\rightarrow 10^{35}$ cm⁻²s⁻¹
- Replace SPS
 - By SC machine @ 1 TeV???

Planned within supplementary budget voted by Council

R&D within supplementary budget voted by Council

Upgrade Scenarios Currently Favoured

Avoid
problems
with beam
heating
Peak
luminosity ~
10³⁵ cm⁻²s⁻¹

parameter	symbol	25 ns, small β*	50 ns, long
transverse emittance	ε [μm]	3.75	3.75
protons per bunch	N _b [10 ¹¹]	1.7	4.9
bunch spacing	Δt [ns]	25	50
beam current	I [A]	0.86	1.22
longitudinal profile		Gauss	Flat
rms bunch length	σ _z [cm]	7.55	11.8
beta* at IP1&5	β* [m]	0.08	0.25
full crossing angle	θ _c [μrad]	0	381
Piwinski parameter	$\phi = \theta_c \sigma_z / (2 * \sigma_x *)$	0	2.0
hourglass reduction		0.86	0.99
peak luminosity	L [10 ³⁴ cm ⁻² s ⁻¹]	95.5	
peak events per crossing		294	403
initial lumi lifetime	τ _L [h]	2.2	4.5
effective luminosity	$L_{\rm eff}[10^{34}~{ m cm}^{-2}{ m s}^{-1}]$	2.4	2.5
(T _{turnaround} =10 h)	T _{run,opt} [h]	6.6	9.5
effective luminosity	$L_{\rm eff}[10^{34}~{ m cm}^{-2}{ m s}^{-1}]$	3.6	3.5
(T _{turnaround} =5 h)	T _{run,opt} [h]	4.6	6.7
e-c heat SEY=1.4(1.3)	P [W/m]	1.04 (0.59)	0.36 (0.1)
SR heat load 4.6-20 K	P _{SR} [W/m]	0.25	0.36
image current heat	P _{IC} [W/m]	0.33	0.78
gas-s. 100 h (10 h) τ _b	P _{gas} [W/m]	0.06 (0.56)	0.09 (0.9)
extent luminous region	σ ₁ [cm]	3.7	5.3
comment	2.2001	D0 + crab (+ Q0)	wire comp.

Outline of Physics Topics

- Standard Model:
 - Multi-W,Z couplings
 - Rare top decays
- Higgs physics:
 - Light Higgs: measure couplings, rare decays, self-coupling
 - Heavy Higgs: discover!
- New physics:
 - Supersymmetry: sensitivity to heavy sparticles
 - $-Z^{2}$
 - compositeness

Gauge-Boson Couplings @ SLHC

Multiple W/Z Boson Couplings

Sensitivity to Rare Top decays

- Flavour-changing decays very suppressed in the Standard Model
- Window on physics beyond the Standard

†→**q**γ

b-tagging	ideal	real.	μ -tag	
$600 \mathrm{fb}^{-1}$	0.48	0.88	3.76	
6000 fb ⁻¹	0.14	0.26	0.97	

t→qg

b-tagging	ideal	real.	μ -tag
$600 \mathrm{fb^{-1}}$	22.3	60.8	210.
6000 fb ⁻¹	7.04	19.2	66.2

t→qZ

b-tagging	ideal	real.	μ -tag
$600 \; {\rm fb}^{-1}$	0.46	1.1	83.3
6000 fb^{-1}	0.05	0.11	8.3

Results in units of 10⁻⁵

Ideal = MC 4-vector

Real = B-tagging/cuts

as for 10^{34} cm⁻²s⁻¹ μ -tag = assume only B-tag

with muons works

at 10^{35} cm⁻²s⁻¹

Measurements of Higgs Couplings

- Some decays limited by statistics
- Others limited by systematics

Closed symbols: LHC 600 fb⁻¹

Open symbols: SLHC 6000 fb⁻¹

Sensitivity to Rare Higgs Decays

Channels studied:

•
$$H \rightarrow Z\gamma \rightarrow \ell\ell\gamma$$

H → μμ

BR ~ 10⁻⁴ for these channels! Cross section ~ few fb

$m_H ({\rm GeV})$	S/\sqrt{B}	$\frac{\delta \sigma \times BR(H \rightarrow \mu \mu)}{\sigma \times BR}$
120 GeV	7.9	0.13
130 GeV	7.1	0.14
140 GeV	5.1	0.20
150 GeV	2.8	0.36

3000 fb⁻¹

Channel	m _H	S/√B LHC	S/√B SLHC	
		(600 fb ⁻¹)	(6000 fb ⁻¹)	
$H \rightarrow Z\gamma \rightarrow \ell\ell\gamma$	~ 140 GeV	~ 3.5	~ 11	
$H \rightarrow \mu\mu$	130 GeV	~ 3.5 (gg+VBF)	~ 9.5 (gg)	

Additional coupling measurements:

e.g.
$$\Gamma_{\mu} / \Gamma_{W}$$
 to ~ 20%

Higgs Self-Coupling @ SLHC?

Measure triple-Higgs-boson coupling with accuracy comparable to 0.5 TeV ILC?

Awaits confirmation by detailed experimental simulation

Higgs Measurements @ LHC & ILC

Heavy Higgs @ SLHC

Possible Resonance in WZ Channel

- p-like vector meson in chiral Lagrangian model
- Invisible with 300 fb⁻¹, clear with 3000 fb⁻¹

Longitudinal W+W+ Scattering

- Search for high-mass Higgs boson
- Or whatever replaces it

Table 10: Expected numbers of reconstructed events above an invariant mass of 600 GeV (for \sqrt{s} =14 TeV) and 800 GeV (for \sqrt{s} =28 TeV) for models with a strongly-coupled Higgs sector and for the background. The significance was computed as $S/\sqrt{S+B}$.

	300 fb^{-1}	3000 fb 1	300 fb^{-1}	3000 fb^{-1}
Model	14 TeV	14 TeV	28 TeV	28 TeV
Background	7.9	44	20	180
K-matrix Unitarization	14	87	57	490
Significance	3.0	7.6	6.5	18.9
Higgs, 1 TeV	7.2	42	18	147
Significance	1.8	4.5	2.9	8.1

How important are detectors in forward region?

Search for Supersymmetry

Exploring the SUSY Parameter Space

 Most of region allowed by accelerators, cold dark matter can be explored by LHC

Some benchmark points

difficult/impacable

Reach for Supersymmetry

- LHC reaches
 squarks, gluinos
 ~ 2.5 TeV
- Does not cover all dark matter region
- SLHC could reach squarks, gluinos ~ 3.0 TeV

High-Mass SUSY @ SLHC

Preliminary studies of LHC-unfriendly point

Detectable @ SLHC

Exploring the SUSY Parameter Space

 Most of region allowed by accelerators, cold dark matter can be explored by LHC

Implications of LHC Search for LCs

Search for MSSM Higgses @ SLHC

Sensitivity to a Heavy Z' Boson

Sensitivity to Compositeness @ SLHC

Pile-up at Different Luminosities

 $H\rightarrow ZZ \rightarrow \mu\mu ee$ event with M_H = 300 GeV for different luminosities

Detector Issues for the SLHC

High radiation in central tracker

Congested layout in forward direction: space for new low-β* machine elements?

General SLHC Detector Issues

Object	Physics benchmark	Performance benchmark	Detector issue
	Higgs identification, BR measurements	Tagging efficiency vs purity (statistics and bg suppression)	Tracking Pileup
b jets	Higgs mass determination, bg suppression	Mass resolution in the ~ I-few x 100 GeV region	Pileup
fwd jets	Vector boson fusion: - measure H couplings - if no H, search strong WW phenomena	 jet tagging efficiency/fake rate vs jet E_T jet E_T resolution 	Final focus magnets: - acceptance - bg - resolution Pileup
cen jets	Jet vetoes for vector boson fusion	fake rate	Pileup
cen jees	Mass spectroscopy	mass resolution	Pileup
electrons	W/Z ID, SUSY decays, etc W'/Z' properties	ID efficiency vs fake rate	Pileup
muons	W/Z ID, SUSY and H decays, W'/Z' properties, etc.	Forward acceptance, fake rate	albedo forward efficiency final focus geometry

SLHC Physics Reach Compared

Only a few examples in many cases numbers are just indications

Units are TeV (except WLWL reach)

1 JLdt correspond to 1 year of running at nominal luminosity for 1 experiment

PROCESS	VHC 14 TeV 100 fb ⁻¹	SLHC 14 TeV 1000 fb ⁻¹	28 TeV 100 fb ⁻¹	VLHC 40 TeV 100 fb ⁻¹	VLHC 200 TeV 100 fb ⁻¹	L <i>C</i> 0.8 TeV 500 fb ⁻¹	CLIC 5 TeV 1000 fb ⁻¹
Squarks W _L W _L Z' Extra-dim (δ=2) q* Λ compositeness TGC λ, (95%)	2.5 2σ 5 9 6.5 30 0.0014	3 4o 6 12 7.5 40 0.0006	4 4.5 σ 8 15 9.5 40 0.0008	5 7σ 11 25 13 50	20 18 σ 35 65 75 100 0.0003	0.4 60 8† 5-8.5† 0.8 100 0.0004	2.5 90o 30† 30-55† 5 400 0.00008

† indirect reach (from precision measurements)

Approximate direct mass reach:

 \sqrt{s} = 14 TeV, L=10³⁴ (LHC) : up to ≈ 6.5 TeV \sqrt{s} = 14 TeV, L=10³⁵ (SLHC) : up to ≈ 8 TeV \sqrt{s} = 28 TeV, L=10³⁴ : up to ≈ 10 TeV \sqrt{s} = 28 TeV, L=10³⁵ : up to ≈ 11 TeV

F. Gianotti, High Luminosity WG, 31/8/2004

Dreaming is Compulsory

Conclusions

- The 'expected'
 - Higgs but where?
 - Study in detail for more clues
- The 'expected unexpected'
 - Supersymmetry/extra dimensions
 - Unravelling it will need more data
- The 'unexpected unexpected'
 - **-** ?????

- 'Super-LHCb'

