
ATLAS Autonomous Multicore 
Provisioning 

Dynamic Allocation with Condor 

 
William Strecker-Kellogg 



ATLAS Tree Structure 

• Use hierarchical group-quotas in Condor 
– Leaf-nodes in the hierarchy get jobs submitted to 

them and correspond 1:1 with panda-queues 

– Surplus resources from underutilized queues are 
automatically allocated to other, busier queues 
• Quotas determine steady-state allocation when all queues 

are busy 

– Quota of parent groups are the sum of their children’s 
quotas 

 
(see next slide for diagram) 



ATLAS Tree Structure 

atlas (12000) 

analysis (2000) 

prod (10000) 

himem (1000) 

single (3500) 

mcore (5500) 

short (1000) long (1000) 

grid (40) 

<root> 

(quota) 



Surplus Sharing 

• Surplus sharing is controlled by boolean 
accept_surplus flag on each queue 

– Quotas / surplus are normalized in units of CPUs 

• Groups with flag can share with their siblings 

– Parent groups with flag allow surplus to “flow 
down” the tree from their siblings to their children 

– Parent groups without accept_surplus flag 
constrain surplus-sharing to among their children 



Surplus Sharing 

• Scenario: analysis has 
quota of 2000 and no 
accept_surplus; short 
and long have a quota 
of 1000 each and 
accept_surplus on 
– short=1600, 

long=400…possible 

– short=1500, 
long=700…impossible 
(violates analysis quota) 

 



Partitionable Slots 

• Each batch node is configured to be 
partitioned into arbitrary slices of CPUs 
– Condor terminology: 

•  Partitionable slots are automatically sliced into 
dynamic slots 

• Multicore jobs are thus accommodated with 
no administrative effort 
– Farm is filled depth first (default is breadth first) to 

reduce fragmentation 
• Only minimal (~1-2%) defragmentation necessary 



Where’s the problem? 

• Everything works perfectly with all single-core 
• However… Multicore jobs will not be able to 

compete for surplus resources fairly 
– Negotiation is greedy, if 7 slots are free, they won’t 

match an 8-core job but will match 7 single-core jobs 
in the same cycle 
• If any multicore queues compete for surplus with single core 

queues, the multicore will always lose 

 

• A solution outside Condor is needed 
– Ultimate goal is to maximize farm utilization 



Dynamic Allocation 

• A script watches panda queues for demand 

– Queues that have few or no pending jobs are 
considered empty 

– Short spikes are smoothed out in demand 
calculation 

• Script is aware of Condor’s group-structure 

– Builds tree dynamically from database 

• This facilitates altering the group hierarchy with no 
rewriting of the script 

 

 



Dynamic Allocation 

• Script figures out which queues are able to 
accept_surplus 
– Based on comparing “weight” of queues 

• Weight defined as size of job in queue (# cores) 

– Able to cope with any combination of demands 

– Prevents starvation by allowing surplus into “heaviest” 
queues first 
• Avoids both single-core and multicore queues competing for 

the same resources 

– Can shift balance between entire sub-trees in 
hierarchy (e.g. analysis <--> production) 

 



Results 



Results 

• Dips in regular production (magenta) are filled 
in by multicore jobs (pink) 

– Some inefficiency remains due to fragmentation 

• There is some irreducible average wait-time for 8 cores 
on a single machine to become free 

• Results look promising, will even allow grid 
resources to backfill if all ATLAS queues drain 

– Currently impossible as Condor doesn’t support 
preemption of dynamic slots… they are working on it. 

 



THANK YOU! 

Dynamic allocation script and images credit to my summer intern: 

 Mark Jensen (SUNY Stony Brook) 

 

Questions?  <willsk@bnl.gov>  


