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ATLAS Tree Structure 

• Use hierarchical group-quotas in Condor 
– Leaf-nodes in the hierarchy get jobs submitted to 

them and correspond 1:1 with panda-queues 

– Surplus resources from underutilized queues are 
automatically allocated to other, busier queues 
• Quotas determine steady-state allocation when all queues 

are busy 

– Quota of parent groups are the sum of their children’s 
quotas 

 
(see next slide for diagram) 
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Surplus Sharing 

• Surplus sharing is controlled by boolean 
accept_surplus flag on each queue 

– Quotas / surplus are normalized in units of CPUs 

• Groups with flag can share with their siblings 

– Parent groups with flag allow surplus to “flow 
down” the tree from their siblings to their children 

– Parent groups without accept_surplus flag 
constrain surplus-sharing to among their children 



Surplus Sharing 

• Scenario: analysis has 
quota of 2000 and no 
accept_surplus; short 
and long have a quota 
of 1000 each and 
accept_surplus on 
– short=1600, 

long=400…possible 

– short=1500, 
long=700…impossible 
(violates analysis quota) 

 



Partitionable Slots 

• Each batch node is configured to be 
partitioned into arbitrary slices of CPUs 
– Condor terminology: 

•  Partitionable slots are automatically sliced into 
dynamic slots 

• Multicore jobs are thus accommodated with 
no administrative effort 
– Farm is filled depth first (default is breadth first) to 

reduce fragmentation 
• Only minimal (~1-2%) defragmentation necessary 



Where’s the problem? 

• Everything works perfectly with all single-core 
• However… Multicore jobs will not be able to 

compete for surplus resources fairly 
– Negotiation is greedy, if 7 slots are free, they won’t 

match an 8-core job but will match 7 single-core jobs 
in the same cycle 
• If any multicore queues compete for surplus with single core 

queues, the multicore will always lose 

 

• A solution outside Condor is needed 
– Ultimate goal is to maximize farm utilization 



Dynamic Allocation 

• A script watches panda queues for demand 

– Queues that have few or no pending jobs are 
considered empty 

– Short spikes are smoothed out in demand 
calculation 

• Script is aware of Condor’s group-structure 

– Builds tree dynamically from database 

• This facilitates altering the group hierarchy with no 
rewriting of the script 

 

 



Dynamic Allocation 

• Script figures out which queues are able to 
accept_surplus 
– Based on comparing “weight” of queues 

• Weight defined as size of job in queue (# cores) 

– Able to cope with any combination of demands 

– Prevents starvation by allowing surplus into “heaviest” 
queues first 
• Avoids both single-core and multicore queues competing for 

the same resources 

– Can shift balance between entire sub-trees in 
hierarchy (e.g. analysis <--> production) 

 



Results 



Results 

• Dips in regular production (magenta) are filled 
in by multicore jobs (pink) 

– Some inefficiency remains due to fragmentation 

• There is some irreducible average wait-time for 8 cores 
on a single machine to become free 

• Results look promising, will even allow grid 
resources to backfill if all ATLAS queues drain 

– Currently impossible as Condor doesn’t support 
preemption of dynamic slots… they are working on it. 

 



THANK YOU! 

Dynamic allocation script and images credit to my summer intern: 

 Mark Jensen (SUNY Stony Brook) 

 

Questions?  <willsk@bnl.gov>  


