
Vakho Tsulaia

LBL

US ATLAS S&C Meeting
Berkeley, August 21, 2014

Yoda

Event Service Implementation for HPC
(Concept)



V. Tsulaia, Aug-21, 20142

● On (most) HPCs the architecture and accessibility limitations make 
operation of the conventional Event Service impossible
– No outbound internet connection from the compute nodes

● For such architectures the Event Service functionality needs to be 
implemented in a new way

● Proposal: turn Event Service into a MPI-application
– Rank 0: a lightweight JEDI
– Rank N (N!=0): a lightweight Pilot/Execution Wrapper

● Name for such MPI-application: Yoda

Introduction



V. Tsulaia, Aug-21, 20143

 Design

Document: https://twiki.cern.ch/twiki/pub/PanDA/EventServer/Yoda.pdf

https://twiki.cern.ch/twiki/pub/PanDA/EventServer/Yoda.pdf


V. Tsulaia, Aug-21, 20144

● Yoda job should be submitted to the batch system like a “regular MPI” 
job

● Example (using aprun command):

aprun n X N 1 cc none yoda.py [input parameters]

X (>1) here is the number of MPI-ranks for the given job

-cc none is used to avoid pinning all forked sub-processes to the same 
CPU core

● Skeleton for yoda.py:

Running

from mpi4py import MPI
mpirank = MPI.COMM_WORLD.Get_rank()

if mpirank==0:
# Run lightweight JEDI

else:
# Run lightweight Pilot



V. Tsulaia, Aug-21, 20145

● Rank 0 and Rank N in Yoda application perform basically the same 
tasks as JEDI/PanDA Server and Pilot in the conventional Event 
Service

● Thus, the idea is to reuse the existing JEDI and Pilot code for Yoda 
as much as possible
– The complete functionality will not be necessary. That's why we are talking 

about lightweight versions

● One of the main difference:
– Conventional ES: JEDI and Pilot communicate over HTTP

– Yoda: JEDI and Pilot communicate using MPI point-to-point 
communication mechanisms

● No changes are expected either for AthenaMP payload, or for 
Token Extractor

MPI Ranks for Yoda



V. Tsulaia, Aug-21, 20146

● All input files (EVGEN for G4Atlas) need to be available for Yoda on 
the shared FS

● In addition to that, for each input EVGEN file we need to make a TAG 
file
– Token Extractors will use TAG files for Event Number to POOL Token 

conversion

– In the absence of the outbound internet connection from the compute 
nodes, we cannot use the Event Index

● And, we also need to make ASCII file containing EVGEN File GUID to 
TAG File Name mapping
– The same mapping files are used for the conventional ES

● The TAG files as well as the mapping files also must be accessible on 
the shared FS

Input



V. Tsulaia, Aug-21, 20147

● AthenaMP writes the output files (one per each event range) directly 
to the shared FS and reports their location to the Pilot (Rank N) 

● The Pilot passes this information over to JEDI (Rank 0)

● Rank 0 has several options for merging the outputs
– Initiate merging during the execution of Yoda

– Collect all info required for merging and pass it over to the job submitter 
application, which can proceed with merging after the Yoda job has 
finished

– Follow the approach of the conventional ES and upload the outputs 
to an external aggregation point (Object Store)

Output



V. Tsulaia, Aug-21, 20148

● Rank 0 will use SQLite files for storing Event Table and Job Table for 
the Yoda job 

● The SQLite databases will also be available on the shared FS

● The information from these SQLite files can be passed outside of 
HPC to the central PanDA services for external monitoring of the 
running Yoda jobs

Monitoring


	Title page
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

