
Aug 19, 2014

Dual-use CP Tool Issues

Steve Farrell 
!

US ATLAS Software and Computing / Physics Support Meeting



Introduction

• The purpose of this talk is to present and discuss the various issues that 
users/developers are experiencing due to the migration and use of dual-use 
CP tools. 

• Most issues that have popped up on the mailing lists fall into these categories 
• Passing user-defined info to tools 
• Dealing with deep/shallow copies of objects in TEvent/TStore 
• Tool interface design 

• These issues are not all unresolved. In fact, it’s possible that by now they are 
all resolved!

2



What are CP tools?

• Combined Performance tools are used by everyone doing analysis to apply 
the recommendations of the CP groups 

• Operations performed by CP tools 
• Apply a correction to objects 

• E.g., scale the jet energy in MC to match data 
• Select objects that are considered “good” for analysis 

• E.g. reject muons with insufficient number of ID tracks 
• Provide scale factors to correct selection efficiencies 

• E.g. correct the electron trigger efficiency in MC to match data 
• Many of these tool operations are associated with systematic uncertainties, so 

tools must also be able to provide systematic variations 
• In Run 1, most CP tools were written to work on D3PDs 

• With long lists of method arguments

3



Dual-use tool design

• Described here: 
• https://cds.cern.ch/record/1639568 

• Developed to facilitate CP tool 
development for the dual-use xAOD EDM 

• Dual-use functionality provided in the form 
of an AsgTool base class and the 
IAsgTool interface 
• Only need to write one tool for both 

environments! 
• Tool interface classes can be reused by 

different implementations 
• Tools can implement more than one 

interface

4

In Athena

In ROOT

https://cds.cern.ch/record/1639568


Dual-use tool guidelines

• Described here 
• https://cds.cern.ch/record/1667206 

• Recommendations are given for tool naming and method forms; e.g., 
!

• Systematics interface 
• Systematics tools should implement the ISystematicsTool interface, and 

define the following methods: 
!
!
!
!
• In addition, they should register their affecting and recommended 

systematics in the SystematicRegistry 
• Described in more detail on the dedicated twiki: https://twiki.cern.ch/twiki/

bin/viewauth/AtlasComputing/CPToolsSystematicsInterface
5

SystematicCode Tool::applySystematicVariation(const SystematicSet& systConfig);	

bool Tool::isAffectedBySystematic(SystematicVariation) const ;	

SystematicSet Tool::affectingSystematics() const ;	

SystematicSet Tool::recommendedSystematics() const ;

CorrectionCode Tool::applyCorrection(xAODObjectType& inputObject) ;

https://cds.cern.ch/record/1667206
https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/CPToolsSystematicsInterface


Tool migration

• Arguably the biggest issue is getting developers to do the migration! 
• Current status is shown on the twiki: 

• https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/
ASGUserAnalysisToolsxAODMigration 

• At the time of this writing, the twiki reports: 
• 11 tools are done and in the release 
• 7 tools are ~done but not in the release 
• 10 tools are on the way (range of expected delivery dates) 
• 3 tools still need volunteers or need to get started 

• Are we happy with this progress? What can we do to push the remaining tool 
developers? 
• We can volunteer to help more 
• Host another sprint-like event?

6

https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/ASGUserAnalysisToolsxAODMigration


Tool migration - systematics interface

• It’s unclear how many tools are currently utilizing the systematics interface 
• The final form didn’t make it into the first guidelines note version, but it is 

there in the current version 
• We can’t be sure the interface satisfies all use-cases and workflows are 

satisfied until all developers try to implement the interface 
• We already know of some cases where the situation gets complicated; e.g., 

b-tagging uncertainties 
• CPAnalysisExamples has a couple of examples demonstrating the usage 

• …though they differ slightly and should maybe be unified

7



Passing user-defined info to tools

• This was brought up in the context of the JES uncertainties tool, which 
requires a few things from the user: 
• Number of primary vertices (NPV) 
• Number of selected jets 
• Which jets are considered b-jets 

• NPV is mostly considered a non-issue because it “should” be standardized in 
run 2 
• But there’s still the (slightly related) question of where/how to get it. Via a 

small standard tool, decorated on EventInfo? 
• The remaining two points are examples of things that can easily pop up again 

and are maybe not covered clearly enough in the design guidelines: 
• How to pass analysis-specific object-level and event-level information into 

tools

8

Very analysis-specific; cannot be 
generically coded into the tool



Passing user-defined info to tools

• Solutions proposed 
• User decorates objects/EventInfo as appropriate 

• e.g., numSelectedJets, isBJet 
• Extend tool methods to take additional arguments 
• For object-level info, user could specify sub-containers to tools 

• e.g., MySelectedJets, MyBJets, etc. 
• Decoration seems to be the preferred route in most cases 
• However, user-info often changes with systematics! 

• For objects, the user will probably use deep or shallow copies for each 
systematic 

• For event-level info, the solution is less obvious 
• Clear the decorations at every systematic? 
• Use shallow copies of EventInfo?

9



Container operations

• The guidelines mostly recommend method forms like this: 
• void MyTool::applyCorrection(xAOD::Object* obj) 

• To my knowledge, there is no existing precedent or recommendation for 
container-level operations like this: 
• void MyTool::applyCorrection(xAOD::ObjectContainer* container) 

• Such an interface that operates on entire containers could be useful 
• User can supply optional input decoration or use view-containers to control 

which objects are operated on in the container 
• This is an open question for discussion

10



Tool interface usage and design

• The relevant thread in this case was started by me: 
• https://groups.cern.ch/group/atlas-sw-pat-am-framework-tf/Lists/Archive/Flat.aspx?RootFolder=%2Fgroup

%2Fatlas-sw-pat-am-framework-tf%2FLists%2FArchive%2FTool%20interface
%20questions&FolderCTID=0x012002002299926C44B9FC4F80B9CBCBEB042C7D 

• Recommendations in the guidelines and examples in CPAnalysisExamples 
lead to a design where a top level tool inherits from multiple unrelated 
interfaces: 
!
!
!
!

• Then, in Athena (also now in ROOT), one can retrieve and manage tools with a 
handle: 
• ToolHandle<IMyCorrectionTool> 

• However, such an inheritance scheme doesn’t allow to simply use both the 
correction and systematics interfaces from one handle 
• So what’s the best way to handle/fix it?

11

MyCorrectionTool

IMyCorrectionToolAsgTool

IAsgTool

ISystematicsTool

https://groups.cern.ch/group/atlas-sw-pat-am-framework-tf/Lists/Archive/Flat.aspx?RootFolder=%2Fgroup%2Fatlas-sw-pat-am-framework-tf%2FLists%2FArchive%2FTool%20interface%20questions&FolderCTID=0x012002002299926C44B9FC4F80B9CBCBEB042C7D


Tool interface usage and design

• An easy solution would be to simply change the inheritance scheme 
!
!
!
!

• But the idea of interfaces is that they should typically be separate and not 
depend on each other 
• Different ToolHandles can be used to access the different tool functionalities 

• Systematics actually can be separated, though whether you’d want to will 
depend on how you setup your code 
• E.g., one could probably set systematic behavior of all tools in one place. 

Attila suggested the SystematicRegistry 
• In RootCore I expect many users won’t need to worry about the interface 

layout since they will deal with simple pointers to the explicit tool types rather 
than ToolHandles

12

MyCorrectionTool

IMyCorrectionToolAsgTool

IAsgTool

ISystematicsTool



Deep copies of objects

• This issue came up on the PATHelp mailing list from Ruggero Turra: 
• https://groups.cern.ch/group/hn-atlas-PATHelp/Lists/Archive/Flat.aspx?RootFolder=%2Fgroup%2Fhn-atlas-

PATHelp%2FLists%2FArchive%2Fcopy%20electron%20for%20CP
%20tool&FolderCTID=0x0120020084D7E80CB0C3394A8D54EF07C309B044 

• When doing a deep copy of an object, it is easy for the user to make a mistake 
that the compiler will not catch: 
• xAOD::Electron* electron_copy = new xAOD::Electron(); 

electron_copy->makePrivateStore(electron_ptr); 
• Of course, the correct form is to provide a reference to the original particle, 

rather than a pointer: 
• xAOD::Electron* electron_copy = new xAOD::Electron(); 

electron_copy->makePrivateStore(*electron_ptr); 
• This will probably happen to a lot of users unless dealt with 

• Karsten suggested using the explicit keyword in the method definition

13

https://groups.cern.ch/group/hn-atlas-PATHelp/Lists/Archive/Flat.aspx?RootFolder=%2Fgroup%2Fhn-atlas-PATHelp%2FLists%2FArchive%2Fcopy%20electron%20for%20CP%20tool&FolderCTID=0x0120020084D7E80CB0C3394A8D54EF07C309B044


Using deep/shallow copies with TEvent/TStore

• There was some confusion with the METUtility tool on how to use transient 
containers with TEvent and TStore, seen by Kerim Suruliz and Teng Jian Khoo 
• https://groups.cern.ch/group/atlas-sw-tf4/Lists/Archive/Flat.aspx?RootFolder=%2Fgroup%2Fatlas-sw-tf4%2FLists

%2FArchive%2Fdeepshallow%20copy%2C%20new%20containers%20%2B%20deleting%20a
%20container&FolderCTID=0x01200200170AFF90D76F904A8E2A4602FEB7686C 

• Naively storing and retrieving containers with evtStore record/retrieve calls of 
course won’t work without properly instantiating a TStore and recording the 
containers there. 

• To the user, this stuff about stores and copy-containers might look a little 
complicated, but this is maybe just a documentation issue. 
• Attila gave a nice thorough explanation in the thread, but maybe the 

examples, twikis, and or printouts need to be made more clear 
• In this case, the error message they received was informative, but not quite 

enough to help them solve the issue on their own. 
• In the same thread, the issue of using VarHandles was brought up and discussed 

as a way to possibly simplify the user’s interface to TEvent and TStore 
• But that is a discussion for Paolo’s presentation

14

https://groups.cern.ch/group/atlas-sw-tf4/Lists/Archive/Flat.aspx?RootFolder=%2Fgroup%2Fatlas-sw-tf4%2FLists%2FArchive%2Fdeepshallow%20copy%2C%20new%20containers%20%2B%20deleting%20a%20container&FolderCTID=0x01200200170AFF90D76F904A8E2A4602FEB7686C


Conclusions

• Migration is (finally) coming along nicely, though it may take a while to have 
everything fully validated 
• Systematics in particular hasn’t been fully field tested 

• Most of the “issues” encountered were minor 
• Misunderstandings about how to properly use the technology 
• Discussions on how to properly apply the guidelines 
• Discussions on how to handle new use-cases 

• No major roadblocks foreseen, but more issues may arise later

15


