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Introduction

• The purpose of this talk is to present and discuss the various issues that 
users/developers are experiencing due to the migration and use of dual-use 
CP tools. 

• Most issues that have popped up on the mailing lists fall into these categories 
• Passing user-defined info to tools 
• Dealing with deep/shallow copies of objects in TEvent/TStore 
• Tool interface design 

• These issues are not all unresolved. In fact, it’s possible that by now they are 
all resolved!
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What are CP tools?

• Combined Performance tools are used by everyone doing analysis to apply 
the recommendations of the CP groups 

• Operations performed by CP tools 
• Apply a correction to objects 

• E.g., scale the jet energy in MC to match data 
• Select objects that are considered “good” for analysis 

• E.g. reject muons with insufficient number of ID tracks 
• Provide scale factors to correct selection efficiencies 

• E.g. correct the electron trigger efficiency in MC to match data 
• Many of these tool operations are associated with systematic uncertainties, so 

tools must also be able to provide systematic variations 
• In Run 1, most CP tools were written to work on D3PDs 

• With long lists of method arguments
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Dual-use tool design

• Described here: 
• https://cds.cern.ch/record/1639568 

• Developed to facilitate CP tool 
development for the dual-use xAOD EDM 

• Dual-use functionality provided in the form 
of an AsgTool base class and the 
IAsgTool interface 
• Only need to write one tool for both 

environments! 
• Tool interface classes can be reused by 

different implementations 
• Tools can implement more than one 

interface
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In Athena

In ROOT

https://cds.cern.ch/record/1639568


Dual-use tool guidelines

• Described here 
• https://cds.cern.ch/record/1667206 

• Recommendations are given for tool naming and method forms; e.g., 
!

• Systematics interface 
• Systematics tools should implement the ISystematicsTool interface, and 

define the following methods: 
!
!
!
!
• In addition, they should register their affecting and recommended 

systematics in the SystematicRegistry 
• Described in more detail on the dedicated twiki: https://twiki.cern.ch/twiki/

bin/viewauth/AtlasComputing/CPToolsSystematicsInterface
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SystematicCode Tool::applySystematicVariation(const SystematicSet& systConfig);	

bool Tool::isAffectedBySystematic(SystematicVariation) const ;	

SystematicSet Tool::affectingSystematics() const ;	

SystematicSet Tool::recommendedSystematics() const ;

CorrectionCode Tool::applyCorrection(xAODObjectType& inputObject) ;

https://cds.cern.ch/record/1667206
https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/CPToolsSystematicsInterface


Tool migration

• Arguably the biggest issue is getting developers to do the migration! 
• Current status is shown on the twiki: 

• https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/
ASGUserAnalysisToolsxAODMigration 

• At the time of this writing, the twiki reports: 
• 11 tools are done and in the release 
• 7 tools are ~done but not in the release 
• 10 tools are on the way (range of expected delivery dates) 
• 3 tools still need volunteers or need to get started 

• Are we happy with this progress? What can we do to push the remaining tool 
developers? 
• We can volunteer to help more 
• Host another sprint-like event?
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https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/ASGUserAnalysisToolsxAODMigration


Tool migration - systematics interface

• It’s unclear how many tools are currently utilizing the systematics interface 
• The final form didn’t make it into the first guidelines note version, but it is 

there in the current version 
• We can’t be sure the interface satisfies all use-cases and workflows are 

satisfied until all developers try to implement the interface 
• We already know of some cases where the situation gets complicated; e.g., 

b-tagging uncertainties 
• CPAnalysisExamples has a couple of examples demonstrating the usage 

• …though they differ slightly and should maybe be unified
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Passing user-defined info to tools

• This was brought up in the context of the JES uncertainties tool, which 
requires a few things from the user: 
• Number of primary vertices (NPV) 
• Number of selected jets 
• Which jets are considered b-jets 

• NPV is mostly considered a non-issue because it “should” be standardized in 
run 2 
• But there’s still the (slightly related) question of where/how to get it. Via a 

small standard tool, decorated on EventInfo? 
• The remaining two points are examples of things that can easily pop up again 

and are maybe not covered clearly enough in the design guidelines: 
• How to pass analysis-specific object-level and event-level information into 

tools
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Very analysis-specific; cannot be 
generically coded into the tool



Passing user-defined info to tools

• Solutions proposed 
• User decorates objects/EventInfo as appropriate 

• e.g., numSelectedJets, isBJet 
• Extend tool methods to take additional arguments 
• For object-level info, user could specify sub-containers to tools 

• e.g., MySelectedJets, MyBJets, etc. 
• Decoration seems to be the preferred route in most cases 
• However, user-info often changes with systematics! 

• For objects, the user will probably use deep or shallow copies for each 
systematic 

• For event-level info, the solution is less obvious 
• Clear the decorations at every systematic? 
• Use shallow copies of EventInfo?
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Container operations

• The guidelines mostly recommend method forms like this: 
• void MyTool::applyCorrection(xAOD::Object* obj) 

• To my knowledge, there is no existing precedent or recommendation for 
container-level operations like this: 
• void MyTool::applyCorrection(xAOD::ObjectContainer* container) 

• Such an interface that operates on entire containers could be useful 
• User can supply optional input decoration or use view-containers to control 

which objects are operated on in the container 
• This is an open question for discussion
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Tool interface usage and design

• The relevant thread in this case was started by me: 
• https://groups.cern.ch/group/atlas-sw-pat-am-framework-tf/Lists/Archive/Flat.aspx?RootFolder=%2Fgroup

%2Fatlas-sw-pat-am-framework-tf%2FLists%2FArchive%2FTool%20interface
%20questions&FolderCTID=0x012002002299926C44B9FC4F80B9CBCBEB042C7D 

• Recommendations in the guidelines and examples in CPAnalysisExamples 
lead to a design where a top level tool inherits from multiple unrelated 
interfaces: 
!
!
!
!

• Then, in Athena (also now in ROOT), one can retrieve and manage tools with a 
handle: 
• ToolHandle<IMyCorrectionTool> 

• However, such an inheritance scheme doesn’t allow to simply use both the 
correction and systematics interfaces from one handle 
• So what’s the best way to handle/fix it?
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MyCorrectionTool

IMyCorrectionToolAsgTool

IAsgTool

ISystematicsTool

https://groups.cern.ch/group/atlas-sw-pat-am-framework-tf/Lists/Archive/Flat.aspx?RootFolder=%2Fgroup%2Fatlas-sw-pat-am-framework-tf%2FLists%2FArchive%2FTool%20interface%20questions&FolderCTID=0x012002002299926C44B9FC4F80B9CBCBEB042C7D


Tool interface usage and design

• An easy solution would be to simply change the inheritance scheme 
!
!
!
!

• But the idea of interfaces is that they should typically be separate and not 
depend on each other 
• Different ToolHandles can be used to access the different tool functionalities 

• Systematics actually can be separated, though whether you’d want to will 
depend on how you setup your code 
• E.g., one could probably set systematic behavior of all tools in one place. 

Attila suggested the SystematicRegistry 
• In RootCore I expect many users won’t need to worry about the interface 

layout since they will deal with simple pointers to the explicit tool types rather 
than ToolHandles
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MyCorrectionTool

IMyCorrectionToolAsgTool

IAsgTool

ISystematicsTool



Deep copies of objects

• This issue came up on the PATHelp mailing list from Ruggero Turra: 
• https://groups.cern.ch/group/hn-atlas-PATHelp/Lists/Archive/Flat.aspx?RootFolder=%2Fgroup%2Fhn-atlas-

PATHelp%2FLists%2FArchive%2Fcopy%20electron%20for%20CP
%20tool&FolderCTID=0x0120020084D7E80CB0C3394A8D54EF07C309B044 

• When doing a deep copy of an object, it is easy for the user to make a mistake 
that the compiler will not catch: 
• xAOD::Electron* electron_copy = new xAOD::Electron(); 

electron_copy->makePrivateStore(electron_ptr); 
• Of course, the correct form is to provide a reference to the original particle, 

rather than a pointer: 
• xAOD::Electron* electron_copy = new xAOD::Electron(); 

electron_copy->makePrivateStore(*electron_ptr); 
• This will probably happen to a lot of users unless dealt with 

• Karsten suggested using the explicit keyword in the method definition
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https://groups.cern.ch/group/hn-atlas-PATHelp/Lists/Archive/Flat.aspx?RootFolder=%2Fgroup%2Fhn-atlas-PATHelp%2FLists%2FArchive%2Fcopy%20electron%20for%20CP%20tool&FolderCTID=0x0120020084D7E80CB0C3394A8D54EF07C309B044


Using deep/shallow copies with TEvent/TStore

• There was some confusion with the METUtility tool on how to use transient 
containers with TEvent and TStore, seen by Kerim Suruliz and Teng Jian Khoo 
• https://groups.cern.ch/group/atlas-sw-tf4/Lists/Archive/Flat.aspx?RootFolder=%2Fgroup%2Fatlas-sw-tf4%2FLists

%2FArchive%2Fdeepshallow%20copy%2C%20new%20containers%20%2B%20deleting%20a
%20container&FolderCTID=0x01200200170AFF90D76F904A8E2A4602FEB7686C 

• Naively storing and retrieving containers with evtStore record/retrieve calls of 
course won’t work without properly instantiating a TStore and recording the 
containers there. 

• To the user, this stuff about stores and copy-containers might look a little 
complicated, but this is maybe just a documentation issue. 
• Attila gave a nice thorough explanation in the thread, but maybe the 

examples, twikis, and or printouts need to be made more clear 
• In this case, the error message they received was informative, but not quite 

enough to help them solve the issue on their own. 
• In the same thread, the issue of using VarHandles was brought up and discussed 

as a way to possibly simplify the user’s interface to TEvent and TStore 
• But that is a discussion for Paolo’s presentation
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https://groups.cern.ch/group/atlas-sw-tf4/Lists/Archive/Flat.aspx?RootFolder=%2Fgroup%2Fatlas-sw-tf4%2FLists%2FArchive%2Fdeepshallow%20copy%2C%20new%20containers%20%2B%20deleting%20a%20container&FolderCTID=0x01200200170AFF90D76F904A8E2A4602FEB7686C


Conclusions

• Migration is (finally) coming along nicely, though it may take a while to have 
everything fully validated 
• Systematics in particular hasn’t been fully field tested 

• Most of the “issues” encountered were minor 
• Misunderstandings about how to properly use the technology 
• Discussions on how to properly apply the guidelines 
• Discussions on how to handle new use-cases 

• No major roadblocks foreseen, but more issues may arise later

15


