
The QuickAna	

Tool Scheduler

Nils Krumnack (Iowa State University)	

Steve Farrell (LBL)	

Xiaowen Lei (Arizona)

Nils Krumnack (Iowa State University)

Introduction
• my basic idea is to have a utility (QuickAna) that provides similar

functionality to TopRootCore and SUSYTools in run 1:	

‣ i.e. apply all the standard CP tools for the user	

‣ provide collections of fully corrected good objects to the user	

‣ provide an overall event weight to the user	

‣ evaluate all systematics in a standardized manner	

!

• would like to improve on TopRootCore/SUSYTools:	

‣ should be a generic tool that can be used in any framework,	

• including athena and the derivation framework	

‣ should rely on the xAOD EDM, instead of implementing its own	

‣ should allow physics groups to add custom prescriptions easily	

‣ should implement harmonization TF prescriptions	

!

• general hope is to consolidate on a single framework

2

Nils Krumnack (Iowa State University)

General Reception
• presented at analysis release meeting	

‣ generally positive reception	

• harmonization task force seemed interested	

‣ i.e. they’d like to have a piece of software that they can endorse

as the "standard" prescription for event correction	

• ASG is generally opposed to any such idea	

‣ they also never liked TopRootCore, so this is consistent	

‣ don’t think they get on board with any tool with such goals	

• talked to Top and SUSY about joining the effort:	

‣ Top interested and we will be working together	

‣ SUSY interested, but declined due to manpower concerns	

!

• now looking into whether TopRootCore can meet our needs	

‣ refactoring it may be easier than starting from scratch	

‣ bonus: TRC is already known and has a user base	

• at a later point, will once more ask SUSY group to join

3

Nils Krumnack (Iowa State University)

Basic Interface for Users
• design assumes the new/casual user sees just a single tool	

‣ provides a "facade" that hides all the implementation details	

‣ internally redirects to various modules/packages	

!

• imagine users start by calling a correctEvent() method:	

‣ applies all CP tools	

‣ initializes tool scheduler to this event	

• the user could then call a variety of functions e.g.:	

‣ isGoodEvent(), eventWeight(), etc.	

‣ jets(), muons(), etc.	

!

• for systematics users reconfigure QuickAna with
applySystematics()	

‣ also can query which systematics affect which step	

‣ similar interface to the CP tools

4

Nils Krumnack (Iowa State University)

Tool Configuration
• users only configure QuickAna, not individual CP tools	

‣ reduces chance for mistakes or mismatches between users	

‣makes configuration more stable against version changes	

• configuration options should roughly correspond to what you
would put in a physics presentation/supporting note	

!

• configuration will be fairly basic, i.e. users can ask for "loose"
electrons, "tight" muons, "anti-kt 0.4" jets, etc. by name	

‣ could also have something like "Top tight" electrons if the Top

group has group specific selection/correction prescriptions	

• possibly other object type specific options?	

‣ e.g. JES decomposition choice for jets?	

!

• advanced configuration would require replacing internal modules	

‣ seems preferable to "overly" flexible configuration	

‣most users shouldn’t need that

5

Nils Krumnack (Iowa State University)

Auto-Documentation
• would like to make it easy for users to document what they did	

‣ ideally all configuration options should be physics relevant and

documented	

• could just copy configuration file into your .ppt	

‣ likely to be a wee bit ugly	

‣ also: users may ask for e.g. the "default" jet definition, and the

documentation should include what that means	

• instead could provide a makeSlide() method that provides a pre-

formatted slide	

• also could provide a printLog() method that prints the complete

information to the log-file	

!

• caveat: this will break down, if	

‣ the user doesn’t specify the release he uses	

‣ or does some customizations that are not properly marked

6

Nils Krumnack (Iowa State University)

Hypothetical Usage
• // do a normal dual-use tool initialization	

• ana::EventTool *tool = new ana::EventTool ("myana");	

• tool->setProperty ("jets", "anti-kt 0.4");	

• tool->setProperty ("electrons", "tight");	

• tool->initialize ();	

!

• // do per-event processing	

• for (auto sys = tool->sysBegin(), …) {	

• tool->applySystematics (*sys);	

• tool->correntEvent (event);	

• …	

• hist[*sys]->Fill (someVariable, tool->eventWeight());	

• }

7

Nils Krumnack (Iowa State University)

Persistification
• QuickAna itself is not meant to do any persistification	

‣ however, it puts all data into the xAOD EDM	

‣ a separate tool could write the relevant data out	

‣will shallow-copy all collections for each systematic	

!

• due to nature of shallow copy, collections would contain both
accepted and rejected objects	

• to distinguish, add special marker-fields:	

‣ ana_accept: passes good object definition	

‣ ana_select: passes user selection	

• probably more, if we add more processing steps	

• persistification can in principle thin collections before writing…	

!

• implication: user needs to be able to break corrections into steps	

‣ i.e. need multiple versions of each correctEvent(), etc.  

or pass the level of correction needed into methods

8

Nils Krumnack (Iowa State University)

User Object Selection
• some tools need to know user object selection, e.g.:	

‣ jet selection for better JES estimation	

‣ jet flavor for more precise systematics	

‣ generally for overlap removal	

‣ incorporating the object SF into event weight	

• mostly optional, i.e. new users can skip this	

‣mainly improves the systematics	

!

• would also allow basic kinematic selection, e.g "pt>100e3"	

‣ using same formula mechanism as for the derivation framework	

• advanced users would break up processing:	

‣ run pre-corrections	

‣ apply user object selection	

‣ run post-corrections	

‣ do event analysis

9

Nils Krumnack (Iowa State University)

Systematics
• in the simplest form follow general interface for CP tools:	

‣ i.e. have applySystematics(), affectingSystematics() and

recommendedSystematics()	

‣ also, need method to go from recommendedSystematics() to

std::vector<SystematicSet>	

!

• when working in multiple processing steps need to break this up:	

‣ i.e. ignore all systematics not affecting this job	

• need at least affectingSystematics() separate per processing step	

‣ and a method to prune an std::vector<SystematicSet> for each

processing step	

!

• users may also want to split systematics by object type	

‣ e.g. don’t vary electrons for jet systematics	

‣ can save space in early processing stages	

‣ however: overlap removal, etc. do tie everything together

10

Nils Krumnack (Iowa State University)

Implementation Details
• users create a single tool	

‣ and that’s all they ever see

11

User Tool

Nils Krumnack (Iowa State University)

Implementation Details
• users create a single tool	

‣ and that’s all they ever see

11

User Tool

je
ts

el
ec

tr
on

s

m
uo

ns

ta
us

• internally it creates one tool
for each object type	

‣ knows which collection to

use and how to correct it

Nils Krumnack (Iowa State University)

Implementation Details
• users create a single tool	

‣ and that’s all they ever see

11

User Tool

je
ts

el
ec

tr
on

s

m
uo

ns

ta
us

overlap removal

• internally it creates one tool
for each object type	

‣ knows which collection to

use and how to correct it

• also creates some global
tools internally	

‣ i.e. tools with no specific

collections associated

Nils Krumnack (Iowa State University)

Implementation Details
• users create a single tool	

‣ and that’s all they ever see

11

User Tool

je
ts

el
ec

tr
on

s

m
uo

ns

ta
us

overlap removalCP CP CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP • internally it creates one tool
for each object type	

‣ knows which collection to

use and how to correct it

• also creates some global
tools internally	

‣ i.e. tools with no specific

collections associated

• the internal tools are
responsible for creating and
using the CP tools

Nils Krumnack (Iowa State University)

Internal Tool Design
• user tool creates internal tools based on its configuration	

‣ after that central tool no longer cares about configuration	

‣ each configuration option should belong to one internal tool	

• in the ideal case the name specifies the object collection to use,
plus the exact configuration of CP tools to use	

‣will also need special names for fake estimates, etc.	

!

• the internal tools should be simple, minimal and focused:	

‣ should be understandable by the "inexperienced" user	

‣ should only contain "physics" code, no data handling, etc.	

‣ tool should be solely responsible for a single object type	

• i.e. looking at one file could tell me everything about jets, etc.	

‣ could use these independently from QuickAna as well	

!

• framework takes care of data handling, systematics management…	

‣ probably break it up into multiple internal modules

12

Nils Krumnack (Iowa State University)

Summary & Outlook
• trying to provide a common tool scheduler for run 2	

‣ aims to provide corrected objects for a "normal" analysis	

‣ tries to sacrifice flexibility in favor of simplicity	

‣ should be framework independent	

‣ components usable without the framework	

!

• still in the early phases of the project	

‣ have a good starting point with TopRootCore	

‣ still need to study it in detail to see what changes it needs	

• hope to get other groups to join in	

‣ still hopeful for SUSY group	

‣ harmonization TF seemed interested	

‣ potentially absorb some smaller frameworks	

• overall timescale unclear, but likely tight

13

