Porting PanDA pilot to Oak Ridge
Leadership Computing Facilities.
Status report.

Danila Oleynik, UTA
21 August 2014

Introduction

* PanDA pilot integration with OLCF has two goals:
make use of allocation and autofill at Titan, and
developing generic solution which can be easily
adapted for other HPC facilities.

* |In addition to factorization of the pilot, we have
identified some common features of HPC's:
— Restricted/no external access to computing nodes

— payload execution management only through a local
batch system

— Special treatment of shared file systems

PanDA@EC2

% BigPanDA

Monitoring

—
Storage@BNL

PanDA@OLCF

-

PanDA Job (HTTPS)

Data (gridFTP)

Interactive node

x509

"Pilot's
launcher"

Pilot

ik

rundobHPC

Backfill
info

Computing
Job

Transfer
| Job

OLCF

]

d

/

Job scheduler

CE—
Titan'
queue

Multicore WN

T

<

Multicore WN

I

=

Multicore WN

T

-

TN

Data Transfer
Node (DTN)

Multicore WN

I

<

Multicore WN

-

T

Shared FS / HPC Scratch

ATLAS SW | r

CVMFS / rsync

PanDA@OLCF (Details)

Pilot(s) executes on interactive node (or some edge
node)

— Allow all needful connections with PanDA server
Pilot interact with local job scheduler to manage job

— Realized on high level abstraction for supporting wide
range of batch systems

Number of executing pilots should be equal or less of
number of available slots in local scheduler

— Increase efficiency of usage of HPC

Stage in/out procedures goes through dedicated OLCF
facility — Data Transfer Nodes (DTN)

— Speedup transfers

Pilot changes for Titan

Minor changes in ATLASexper

iment class for

compatibility verification (to allow proper startup

of pilot)

Functionality for supporting p
process through internal batc
encapsulated in a dedicated ¢

ayload execution
N system
ass

Declaration of common, but HPC specific,

methods and parameters don

e in dedicated class.

NO changes in other pilot components

PanDA Pilot architecture update
|RunJob |

RunJobEvent

RunHPC

RunlobTitan

RunJobMira

* Proper class selection based on schedconfig.catchall
* E.g.catchall = “HPC_Titan” -> RunJobTitan gets selected

RunlJob class

e Base class for supporting payload execution
workflow:

— A lot of common methods which have no depends
from computing backend

RunJobHPC class

 |Inherited from RunJob

* Support common methods and additional
parameters for execution of payload on HPC:
— Limit on maximum number of allocated nodes (cores)
— Limit on waiting time (before internal rescheduling)
— Limit on minimum walltime

— Set of configuration parameters (better to propagate
them through schedconfig)

RunJobTitan class

* |Inherited from RunJobHPC

* Provides execution of MPI payloads on Titan

— SAGA APl used as an interface with internal batch
manager (PBS) on Titan

— Instrumented for efficient use of ‘backfill’ resources:

» Special function collects information about available

resources (number of nodes and availability time) from
MOAB

* PBS job parameters are formed according to available
resources and Titan queue policies

* Introduced PBS wait time limit and retry mechanism

Continuous tests on Titan LCF (July)

* Provided for evaluation of stability of full workflow
* 3 sets by 8 hours

* During testing of backfill algorithm efficiency
consumed 146000 core/hours

* |n most of cases waiting time less than 5 min.

* Detected IO problems on huge allocations (dozens
thousands of cores). Mostly related with non
optimized 10 in payload, cleanup procedure in pilot will
be needed optimization for specific architecture.

— Intensive IO may affect not only payload execution time,
but reliability of facility itself

— Works together with OLCF team for proper solution

Continuous tests on Titan LCF (August)

* Provided for testing of algorithm for internal
rescheduling of payload (backfill procedure
optimization)

 Wait time limit — 2 min.

 ~ 10 hours without interruptions

* Single stream of pilots

e Consumed about 14,4% of available resources
on Titan (2,3% of all Titan resources)

Functional tests at NERSC (Hopper,

Edison)

e Same solution as for Titan (with catching backfill
resources) was successfully tested on Cray
machines at NERSC

— Minor changes for NERSC policy were needed
— Most of changes were for ‘static’ parameters like

gueue name and partition, number of cores per node
etc.

. Compared to Titan, due to different mixture of

HO

jo
‘.O

os (different use poI|C|es?) at NERSC machines,
0 backfill will be not as efficient. Many small

ns, fewer free resources.

Next steps

* Review of methods of collecting monitoring
information and extending with HPC specific data
(number of allocated nodes, state of payload in
internal queue, etc)

* |O optimization for OLCF (initially):
— optimization of cleanup procedure,

— Proper involving DTN for stage in/out procedures (Titan
Mover).

e Testing solution with other HPCs:

— Supercomputer in Ostrava (Czech National
Supercomputing Centre)

— ARCHER (Edinburgh)

