HPC @ ATLAS: Blue Waters

US ATLAS Software Planning Meeting LBNL August 21, 2014

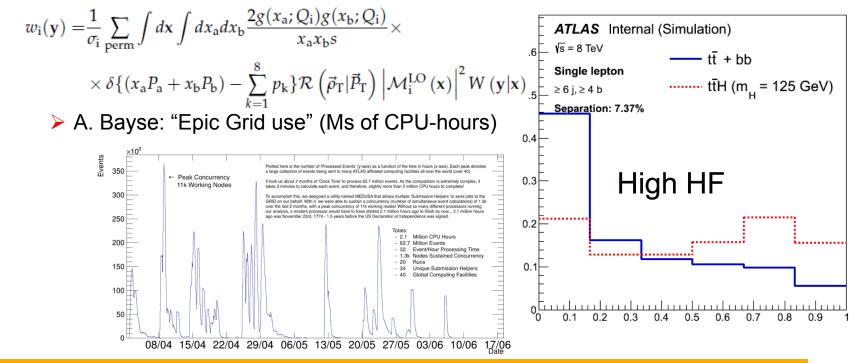
Mark NeubauerUniversity of Illinois

Blue Waters

- NSF-funded (\$200M) Supercomputer @ U. Illinois & NCSA
- Cray XE6/XK7 hybrid machine composed of
 - AMD 6276 "Interlagos" processors
 - NVIDIA GK110 "Kepler" accelerators (XK nodes)
 - Cray Gemini 3D Torus interconnect
- Compute
 - 23k Cray XE nodes
 - 362k Bulldozer cores; 1.4 PB memory
 - 4.2k Cray XK nodes
 - ➤ 34k Bulldozer cores + 4.2k Kepler accelerators
 - > 135 TB CPU / 25 TB GPU memory
- Storage, I/O
 - Online: 26 PB, aggregate I/O > 1 TB/sec
 - Near-line: 380 PB,1.2 GB cache front-end, 58 GB/s aggregate to tape

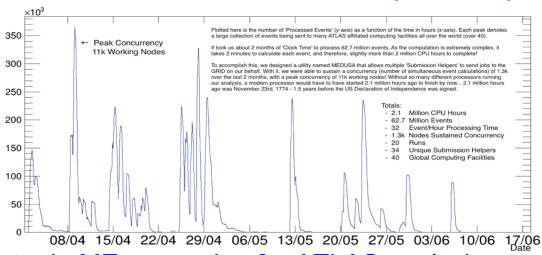
National Petascale Computing Facility

Blue Waters Allocation


- Policy: "2% of the available time will be allocated to university projects: (i) faculty whose research and/or education programs would be greatly enhanced by access to Blue Waters and (ii) research and/or education proposals where a commitment of Blue Waters resources will significantly increase the competitiveness of the proposals"
- Three types of allocations: Exploratory, General, Education
- Exploratory proposals (twice per year, next is due Sept 15!):
 - Evaluate/tune code for platform, demo application for General proposal
 - 20k-50k node-hours over 6 month period (non-renewable)
 - "Project proposals are expected to demonstrate that no other resource would be suitable for a given problem, as Blue Waters is not merely a large source of compute cycles"
 - ❖ my interpretation → "don't view us simply as a bag of rocks to pour sand into"

Possible Applications on Blue Waters

- Matrix-element (ME) calculations
 - Calculate likelihood function for signal and background discrimination
 - Numerous applications of ME technique in ATLAS. At U. Illinois:
 - ❖ Search for ggF/VBF H→WW→IvIv (P. Chang). Based on MadWeight
 - Search for ttH(bb) search (A. Bayse). MG-based stand-alone code



Possible Applications on Blue Waters (cont.)

ME calculations (cont.)

A. Bayse (Illinois) ttH analysis

- Been thinking of better ways to do ME computing for ATLAS analysis
 - P.Chang (Illinois) worked on GPU acceleration of phase space integration and demonstrate 500-fold speed-up on Fermi Tesla GPU
 - New Illinois student will start working on this; collaboration with Chicago
 - We've been thinking through increasing longevity and applicability of ME calculation
 - Large-scale phase space sampling (i.e. create a look-up table)
 - NLO ME with phase-space transformation (like in MadWeight) a holy-grail-like
- BW, as a large GPU resource, could help with the ME calculations scale

Possible Applications on Blue Waters (cont.)

- Fast Hardware Tracker (FTK) simulation?
 - Having a mixed hardware (CPU + co-processor) solution can improve the simulation performance
 - FTK algorithm (based on pattern recognition) are designed to be parallelized
 - ATLAS-wide FTK simulation strategy has been discussed (see https://indico.cern.ch/event/309997) where several approaches were proposed
 - Strategy document for b/τ trigger simulation (https://cdf.cern.ch/record/1747057)
 - ATLAS Simulation load is large and needed @ high pile-up
- High-pile simulation? (high-memory needs)
- Event server demonstrator?

Plans

- Listen carefully to HPC discussing in this workshop (ongoing)
- Develop Exploratory Proposal and decide if its worth submitting in Sept
 If not, rinse and repeat next year

Bonus Material

XE Compute Node

AMD 6276 Interlagos Processors	2
Bulldozer Cores*	16
Integer Scheduling Units**	32
Memory / Bulldozer Core	4 GB
Total Node Memory	64 GB
Peak Performance	313.6 GF
Memory Bandwidth	102.4 GB/s

Interconnect

Architecture	3D Torus
Topology	24x24x24
Compute nodes per Gemini	2
Peak Node Injection Bandwidth	9.6 GB/s

XK Compute Node

Bulldozer Cores* 8 Integer Scheduling Units** 16	
Integer Scheduling Units** 16	
integer scheduling offics	
Memory / Bulldozer Core 4 GB	
Node System Memory 32 G	В
GPU Memory 6 GB	
Peak CPU Performance 156.8	3 GF
CPU Memory Bandwidth 51.2	GB/s
CUDA cores 2688	
Peak GPU Performance (DP) 1.32	TF
GPU Memory Bandwidth 200 0	GB/s

Online Storage

Total Usable Storage		26.4 PB
Aggregate I/O Bandwidth		> 1 TB/s
File System	Size (PB)	# of OSTs
home	2.2	144
projects	2.2	144
scratch	22	1440

See: https://bluewaters.ncsa.illinois.edu

Calculate signal and BG likelihood function

Slide from CMS version of ttH(bb) ME analysis

$$w_{i}(\mathbf{y}) = \frac{1}{\sigma_{i}} \sum_{\text{perm}} \int d\mathbf{x} \int d\mathbf{x}_{a} d\mathbf{x}_{b} \frac{2g(\mathbf{x}_{a}; Q_{i})g(\mathbf{x}_{b}; Q_{i})}{\mathbf{x}_{a}\mathbf{x}_{b}s} \times \\ \times \delta\{(\mathbf{x}_{a}P_{a} + \mathbf{x}_{b}P_{b}) - \sum_{k=1}^{8} p_{k}\}\mathcal{R}\left(\vec{\rho}_{T}|\vec{P}_{T}\right) \left|\mathcal{M}_{i}^{\text{LO}}(\mathbf{x})\right|^{2} W(\mathbf{y}|\mathbf{x})$$

Weight with b-tagging likelihood for bbbb or bbll hypothesis

$$\mathcal{P}_{S}(\mathbf{y}, \boldsymbol{\xi}) \equiv w_{S}(\mathbf{y}) \, \mathcal{L}_{bbbb}(\boldsymbol{\xi})$$

$$\mathcal{P}_{B_{1}}(\mathbf{y}, \boldsymbol{\xi}) \equiv w_{B}(\mathbf{y}) \, \mathcal{L}_{bbbb}(\boldsymbol{\xi})$$

$$\mathcal{P}_{B_{2}}(\mathbf{y}, \boldsymbol{\xi}) \equiv w_{B}(\mathbf{y}) \, \mathcal{L}_{bbjj}(\boldsymbol{\xi})$$

- Calculate ME likelihood ratio
 - For ttbb vs ttll discrimination: $P_{b/j} = \frac{P_{B_1}}{P_{B_1} + P_{B_2}}$
 - For ttH vs tt+bb/ll discrimination: $P_{s/b} = \frac{\mathcal{P}_S}{\mathcal{P}_S + \lambda_{b/j} \mathcal{P}_{B_1} + (1 \lambda_{b/j}) \mathcal{P}_{B_2}}$
 - $\lambda_{b/i}$ is ttbb/ttll fraction from MC (not varied in systematic unc.!!)