ATLAS CONNECT
VISION

Leverage robust, off-the-shelf components from the OSG Campus Grids program, HTCondor,
Globus, Cl Connect, AutoPyFactory, CCTools and the BNL RACF to provide a hybrid job
submission and data management service which integrates directly with existing ATLAS
systems such as PanDA, FAX and Rucio. The new services will focus on providing connective
services to optimize ease of use by end-user physicists, and to maximize resource capacity by
bridging to shared resources on university campuses currently outside the program-funded US
ATLAS Distributed Computing Facility. These services include a federated identity management
system for secure authentication using credentials provided by a user’s home institution, and a
group management system for authorized access to protected resources. Job submission
services will provide capability for direct submission via HTCondor to natively scheduled or
flockable HT Condor clusters, submission using PanDA pilot factory systems and central
database systems, and submission using Campus HTCondor glide-in services such as
BOSCO. Resources principally targeted are beyond pledge Tier 1 and Tier 2 resources, Tier 3
clusters, and shared campus facilities such as a university HPC center. The service should
benefit the entire US ATLAS physics community providing a common inter-campus resource
sharing platform, a job submission and data service environment easily configured to reach a
variety of resource types from a single location. For example, a physicst with an allocation on
his university’s condo cluster, perhaps obtained through startup funding from his Dean, can
schedule jobs to this resource alongside submission to the production grid, a dedicated,
institutional Tier 3 center, any campus HPC center participating in ATLAS Connect service, or to
another institutions private resources, all using the same /home directory. Finally, ATLAS
Connect will inherit developments in provisioning services to agile infrastructures advances as
part of the US ATLAS Facilities program, including work from BNL RACF AutoPyFactory, OSG
Technology Investigations, CERN IT, Globus and elsewhere.

ATLAS CONNECT REQUIREMENTS SUMMARY

e Provide services which allows existing Tier3 clusters to “connect” to the fabric of Tier2
and Tier1 clusters.
An interactive login service accesible by anyone in US ATLAS
Connection to a federated identity management system that supports using local
campus identity for user authentication
e An authorization service to permit user access to distributed resources accessed by the
system
An HTCondor job submission service to connected resources
A service to facilitate Panda job management capabilities (e.g. pilot factory submission)
A locally mounted scratch space with significant capacity to support analysis processing
at a per-user scale to be determined by the US ATLAS Resource Allocation Committee
e Allow sharing of private resources between institutions and users, and the US

http://www.google.com/url?q=http%3A%2F%2Fresearch.cs.wisc.edu%2Fhtcondor%2F&sa=D&sntz=1&usg=AFQjCNGHzzKog4iAGrjj0hnB1gegqcLZ9w
https://www.google.com/url?q=https%3A%2F%2Fwww.globus.org%2F&sa=D&sntz=1&usg=AFQjCNEOnIArXOlCl-0Qhcz3uc0bKN5oVg
http://www.google.com/url?q=http%3A%2F%2Fci-connect.net&sa=D&sntz=1&usg=AFQjCNFIc-uL6n95Up9qr24IzxgCfAem-Q
https://www.google.com/url?q=https%3A%2F%2Ftwiki.cern.ch%2Ftwiki%2Fbin%2Fviewauth%2FAtlasComputing%2FAutoPyFactory&sa=D&sntz=1&usg=AFQjCNGLbzIvhNBqNSI0LFWzwMq_w1dn5A
https://www.google.com/url?q=https%3A%2F%2Fwww3.nd.edu%2F~ccl%2F&sa=D&sntz=1&usg=AFQjCNHxlq35A75EgaTqoY75O4lqgGtnyA
https://www.google.com/url?q=https%3A%2F%2Fwww.racf.bnl.gov%2F&sa=D&sntz=1&usg=AFQjCNGjV2gkXNdt83wDtDaDheLE3_Jiog
http://www.google.com/url?q=http%3A%2F%2Fbosco.opensciencegrid.org%2F&sa=D&sntz=1&usg=AFQjCNESO818T7Tn4VHP6wnJ1CAd_kjN2w
http://www.google.com/url?q=http%3A%2F%2Fcondo-of-condos.org%2F&sa=D&sntz=1&usg=AFQjCNH_ANTWPw4PBXEdbvKgztWaRIubfA

ATLAS-wide Connect service.
e As the resource provisioning layer improves, allow the ability to burst into cloud resourcs
(Amazon, Google, etc.) automatically.

ATLAS CONNECT USER

7

| USER CONNECT

ner-e

PanDA

Y 4),

Flocked Tier2s

Flocked Tier3s

ke

-
—

E.,%:)
\ &} globus ci csznnect)

Initial Components

e connect.usatlas.org, webpage describing the service and point of entry for sign up/sign
in, accounting and monitoring displays, and links to documentation and support.
Deployed.
portal: service for managing group membership and authorizing new users. Deployed.
login: a hosted submit host(s) service with HTCondor, AutoPyFactory and PanDA job
submit capabilities to a variety of targets, both within and beyond dedicated facilities.
HTCondor capability deployed.

e FaxBox: a Posix scratch data service to store job outputs, accessible locally via POSIX
file operations (cp, rm, mv, mkdir, etc) and remotely via Xrootd, http, gridftp, and Globus.
It will not be part of DDM, and therefore, invisible to ADC operations. Basic Ceph

http://www.google.com/url?q=http%3A%2F%2Ffaxbox.mwt2.org&sa=D&sntz=1&usg=AFQjCNGSQuvVwulpS6XvdhLXD_AM16h4pg

filesystem deployed, testing.

For institutions with Cl Connect campus grids (such as Duke University Cl Connect),
FaxBox as well as institutional scratch in the Stash data service, local mount points are
provided so that /lhome and /data scratch areas can be shared between the two ClI
Connect platforms. Duke Cl Connect currently bridges the Duke University campus grid
offerred by the SCC (Duke Grid), UC2 (University of Chicago Computing Cooperative),
and the OSG. Deployed.

ATLAS CONNECT SERVICES

Below we list details about requirements and in some cases descriptions of components already
implemented and deployed.

Identity Management Service

We leverage the Nexus identity management service as implemented by Globus. Details
can be found here.

Allows use of native campus identity management systems, ClLogin and the InCommon
federation. Essentially, a user can signup to ATLAS Connect using his institution network
ID and password.

Also provides identity, profile and group management service.

All this is deployed leveraging Cl Connect (portal.ci-connect.net). This will be replaced
with a “branded” version specific to ATLAS Connect. While the functionality will be
unchanged, this would insure a more uniform look-and-feel for ATLAS users.

Automatic Account Provisioning Service

A host, login.usatlas.org which provides a user login with a /home directory, sym link to
user storage on FAXbox (/home/user/data) is automatically provisioned once a user is
authorized to the system. A user is authorized through a process similar to identity
verification for grid certificates (i.e. via a certified Registration Agent). The technology for
this was adapted from the U-Bolt toolkit developed at the University of Chicago.
Deployed.

Job Submission Service

The login host provides an HTCondor schedd service configured to directly flock to
various targets. Currently, these include CSU Fresno, AGLT2, MWT2, and UC3
(UChicago campus grid). The ATLAS Connect resources are monitored using a
liscense donated by Cycle Computing - see below. The monitor also displays usage by
user name. Basic job throughput testing is being done by CSU Fresno (Harinder Bawa).
Deployed.

http://www.google.com/url?q=http%3A%2F%2Fduke.ci-connect.net&sa=D&sntz=1&usg=AFQjCNEELjVRkyfgcDFMusnmuPOl-JFehQ
http://www.google.com/url?q=http%3A%2F%2Fstash.ci-connect.net&sa=D&sntz=1&usg=AFQjCNEAjLakb4AO8xTcEpifpivFD8z7Iw
http://www.google.com/url?q=http%3A%2F%2Fsciencegateways.org%2Fwp-content%2Fuploads%2F2013%2F10%2FAnanthakrishnan-slides.pdf&sa=D&sntz=1&usg=AFQjCNEq0gR4qjrD9qxb_WbB0nXn36R7wA

ATLAS Connect XSEDE Science Gateway (TACC Stampede)

At the Arizona Facilities meeting Rob, Michael and Peter Onyisi (new faculty hire at
UTexas) discussed mechanisms for accessing Stampede, a signficant computing
resource at TACC.

The essential idea would be to create an RCCF instance (a BOSCO-based factory
service, see below) which uses a group account and submits simple HTCondor jobs into
the local (SLURM) Stampede scheduler.

As TACC is an XSEDE resource, we were advised to follow the Science Gateway model
https://www.xsede.org/gateways-overview, and will begin discussions with Nancy
Wilkins-Diehr from SDSC who oversees the program in January. This will likely require a
formal allocation process at some point, and a gateway account. However using Peter’s
UT faculty status we can easily acquire a startup allocation.

We cannot mount the ATLAS CVMFS repository on TACC resources. However, Parrot
(a system which traps system IO calls, see http://www3.nd.edu/~ccl/software/parrot/)
can be used to mount remote file systems. For the OSG Connect tutorial at the Duke
workshop we demonstrated this for simple ROOT applications run from anywhere.

Peter is working with the Notre Dame CC Tools team to fix issues Parrot has with
Athena. Once those are overcome, a broader scope of applications will be possible.
FAX and FAXbox will be used for data access and job output, in the Tier3-like context.
Panda pilots can be submitted to reach TACC allocations as well, as discussed below.
In that case we could minimize the local effort required to provide the resource by using
Autopyfactory, Bosco, and the MWT2 storage endpoints.

Flocking Service to OSG

ATLAS Connect has the ability to reach opportunistic resources of OSG by flocking to the
OSG VO-XD “front-end” machine. While ATLAS’ CVMFS software repository is not
gauranteed to be present on all OSG sites, Parrot can be used access CVMFS for
simple analysis jobs as discussed above.

http://www.google.com/url?q=http%3A%2F%2Fwww.llnl.gov%2Flinux%2Fslurm%2F&sa=D&sntz=1&usg=AFQjCNGFFmnXul_MifvVaZV2KwfzINMxmg
https://www.google.com/url?q=https%3A%2F%2Fwww.xsede.org%2Fgateways-overview&sa=D&sntz=1&usg=AFQjCNGMvUoJTFahBrEYLaqLh4SUF77IEQ
http://www.google.com/url?q=http%3A%2F%2Fwww3.nd.edu%2F~ccl%2Fsoftware%2Fparrot%2F&sa=D&sntz=1&usg=AFQjCNGtopOTfnK_VA9S02XabIzmLcn-fA
https://www.google.com/url?q=https%3A%2F%2Fconfluence.grid.iu.edu%2Fdisplay%2FCON%2FApplication%2BExample%2B-%2BROOT&sa=D&sntz=1&usg=AFQjCNE3ukt_VmjmzMgc4VTqGyVn_AiSPA

LOGRET I B2 GUEsT oY D

G}'C|E Usage Jobs
Show: Historical grid usage in all pools
Tierse Frame: 3 Hours Day Waak | Henth View as: Area | Line
s Fri Det 6 K
B David Lesny
W Uincols Brysnt
1300 B Harinder Singh Baw
Unclalrmed
1000
800
g
1
&00
400
200
-
2:00 14:00 G080 18:00 200 22:00 00 2:00 4:00 6:00 800 10:00
wersion 4.0.14 licensed o Universty of Chicago, Compytation Tesrrn! aditions @ 2011 Cyde Computing, LLC, Al Rights Reserved My Requests &
Welcome
Pool Summary
Paol Total Slots Running Idle Owner Status Detailed View
CSU Fresno Factory 0 o 0 0 Usage Jobs
Midwest Tler 2 Factory 0 0 0 0 Usage Jobs
University of Chicago Computing Cooperative 528 0 528 0 Usage Jobs
Total 528 0 528 0 Usage Jobs

@0 O L

Jobs by State Jobs by Owner Slots by State Slots by Owner

ATLAS CONNECT CLUSTER

/’

‘ CONNECT cluster

ner-ie

I

W

FaxBox
faxbox.usatlas.org

Amazon cloud

RCC Factory
rccf.usatlas.org

Campus Grids

The

Remote Cluster Connection Service (RCCF - the RCC Factory)
Purpose: attach a Tier 3 cluster to the fabric of Tier 2 centers.
Use HTCondor flocking technology, and a campus pilot factory service running at a Tier 2
center. This has been deployed and is functional: rccf.usatlas.org with resource
targets at MWT2 and AGLT2.
Flocked Tier3s sites: the Argonne Tier3 test cluster, IU, UC, UIUC are functional and have
been tested. Factories have been setup for Argonne, Arizona, Duke, and UC Irvine.
Basic workflow: a user works entirely at his home Tier3. For Tier3’s using Condor as the
job manager, the submit host queue can be configured to ‘overflow’ jobs to the connected
resources, e.g. beyond-pledge Tier2s. For non-Condor Tier3 clusters, a Condor queue
can be installed locally (i.e. a Condor submit host).
User documentation with demonstrated Tier3 — Tier2 analysis examples is needed. The
Tier3 flocking setup and basic job submission documentation is available here:

o http://twiki.mwt2.org/bin/view/Main/LocalClusterSetupToFlockintoRCCF
RCCF Technical details

Each RCCF is a separate Condor pool with a SCHEDD/Collector/Negotiator
The RCCEF injects glideins via SSH into target SCHEDDs at MWT2 and AGLT2
The glidein creates a virtual job slot from Target SCHEDD to the RUCF
Any jobs which are in that RCCF then run on either the MWT2 or AGLT2 Condor pools
Jobs are submitted to the RCCF by flocking from a source SCHEDD
The RCCF can accept flocked jobs from multiple source SCHEDD hosts; for example,
from the SCHEDD running on login.usatlas.org.
Must have open bidirectional access to at least one port on the target SCHEDD
Firewalls can create problems — SHARED_PORT makes it easier (single port)
The system has been Puppetized using the MWT2’s configuration management system
so that new factories (for new targets) can be easily built.
o bosco factory — Create a RCC Factory
m Define the user account and shared port factory runs in
m Other parameters to change max glideins, max running, etc
m User account must exist on uct2-bosco (puppet rule)
m Installs bosco, modifies some files, copies host certificate
o bosco cluster — Create a Bosco Cluster to a target SCHEDD
m Creates Bosco Cluster to target SCHEDD
m User account must exist at target and have SSH keys access
m User account can be anything Target SCHEDD admin allows
m Pushes job wrapper, condor_submit_attributes, etc
o bosco flock — Allow a source SCHEDD to flock to this Factory
m Source SCHEDD FDQN
m For GSI - DN of the Source SCHEDD node
o bosco require —Add a “requirement” (ClassAd) to a slot
m Allows one to add a classAD to a slot, ror example - HAS_CVMFS
m Two classADs added to a factory by default
e IS RCC = True
¢ IS RCC <factory nickname> = True
m Remote Users can use these in their Condor submit file
o Example Puppet rule for a Tier3—Tier2 flocking factory:

bosco::factory { 'uiuc' : bosco_factory => 'uiuc',
bosco_port => '11010",
bosco maxrunningjobs => '1000",
bosco maxidleglideins => '25",
bosco_iterationtime => '15",
bosco maxqueuedjobs => '25",
bosco_version => '1.2",

bosco_security => 'gsi'

http://www.google.com/url?q=http%3A%2F%2Ftwiki.mwt2.org%2Fbin%2Fview%2FMain%2FLocalClusterSetupToFlockIntoRCCF&sa=D&sntz=1&usg=AFQjCNEb7LP2cHmogtIh6tPLdb_fkGa6QQ

e Sample Tier3 HTCondor configuration
Setup the FLOCK TO the RCC Factory

FLOCK_TO = $(FLOCK_TO),
rccf.usatlas.org:<RCC _Factory Port>?sock=collector

Allow the RUC Factory server access to our SCHEDD
ALLOW NEGOTIATOR SCHEDD = $(CONDOR HOST), rccf.usatlas.org
Who do you trust?

GSI_DAEMON NAME = $(GSI DAEMON NAME), /DC=com/DC=DigiCert-Grid/O=Open

Science Grid/OU=Services/CN=rccf.usatlas.org

GSI_DAEMON CERT = /etc/grid-security/hostcert.pem

GSI DAEMON KEY = /etc/grid-security/hostkey.pem

GSI_DAEMON TRUSTED CA DIR = /etc/grid-security/certificates

Enable authentication from tne Negotiator (This is required to run on

glidein jobs)

SEC_ENABLE MATCH PASSWORD AUTHENTICATION = TRUE

e Job Wrapper Script
Setup a minimum familiar environment for the user
Print a job header to help us know when and where the job ran
Date, User and hostname the job is running on
Define some needed environment variables:
m S$SPATH - System paths (should we add /usr/local, etc)
m SHOME — Needed by ROOT and others
B $XrdSecGSISRVNAME — Works around a naming bug
B SIS RCC=True
B SIS RCC <factory>=True
Exec the user executable
Other options:
m AtlasLocalRootBase (probably not as the user can do this)
m Access to FAXbox
m Access to LOCALGROUPDISK
o The script:

O O O O

cat wser_job_wrapper.sh
#!/bin'sh

echo
echo "SafsHE RS e R R R R R R A e R R R R A e R

echo "SHEH BECEDE
echo "SREHT Job is running within a Remote Cluster Connect Factory HHEEET
echo " it
echo "## Date: S(echo $(date) sed -2 i -e s 0 1,600 S/ Aa') HEEE
echo "#atHH User: S(echo $(whoami) | sed -e :a -e 's)\ {1600 S/& ta') "
echo "ffd Host: S(echo S(hostname) | sed -e @ -2 's/ 0 1,600 5/ & /ita') frecprecr
echo "sHHH i

echo "SREEE R R R EER R R S R AR R R R R R R R R R R e e
echo

Setup $PATH if none is defined
I[-z 3PATH || &de export PATH=/usr/bin:/hin

Setup SHOME since many applications look for it
[-z SHOME]| && export HOME=%_CONDOR_JOB_IWD

Make XrootD map propetly for UChicago
export XrdSecGSISEVNAMES="

#iExecute the given command
exec S

e HTCondor submit file example
e Job Accounting and ATLAS Connect Cluster work in progress
o Gratia records from flocked jobs are not associated with a VO
o Simple addition to the gratia config, maps these into the Atlas VO
o Addition made to /etc/gratia/condor/ProbeConfig
m MapUnknownToGroup="1"
m MapGroupToRole="1"
m VOOverride="atlas"
e Might enable gratia on rccf.usatlas.org for each factory instance
Performance

We have made a few performance measurements for jobs submitted to Tier3 clusters wich
flocked to ATLAS Cluster Connect. In this case the jobs ran on MWT2. Some notes:

Jobs will run the same no matter how they arrive on an MWT2 worker node
Submission rates (Condor submit to Execution) are the key
Local submission involves only local SCHEDD/Negotiator/Collector
Flocking from Tier3 — Tier2 has multiple steps

a. Local submission with SCHEDD and Negotiator

b. Local SCHEDD contacts RCCF Factory Negotiator

c. RCCF Negotiator matches jobs to itself and they flock

d. The RCCF factory SSH into an MWT2 SCHEDD and creates a virtual slot on the
MWT2
e. Job begins execution in a free virtual slot on the MWT2 worker node
e To test submission rates, the earlier given simple submission was used
a. Submit 10000 jobs to both the local Condor pool and RCC Factory
Start the clock after the “condor_submit” with a “Queue 10000”
Loop checking when all jobs have completed with “condor_q”
Jobs are only “/bin/hostname” so they exit almost immediately
Wall clock time between start and end will be a 10K submission rate
Difference between local and RCCF test should show the overhead
Local rate dependent on number of local jobs slots
Negotiator cycle time (60 seconds) also plays a big role
Local submission rates depend on number of job slots and Negotiator rate
m Used LX cluster at lllinois
62 empty job slots
Default Negotiator cycle (60 seconds)
Use 10K batch submissions to remove bias of a small sample
Value under 60 can happen within seconds to just over 60
Results follow, displayed as #pending jobs versus wall time

T T@ "o ao0CT

Sliced Local

12000

— Series? |
Series2
Series3

10000 Sariesd

Seriesh

Serest

Seres?
S0 Seresh

Seresd

Series10

Seriesi1
G000

Series12
Series13
Series1d
oo Series15
4000 s Saries1d
Series17
Series18

Series18
2000

. Series20
Series21
Series22
Y Series23
a

Series2d
11121 3 41 & &1 T 81 81 101 111 13 131 141 151 181 171 181 191 201 211 221 231 21 -
— Series25

30 5 slica

Jobs Pending

j- Remote test dependent on how quickly slots become available
m Ran 25 tests, 30 second samples
m Results follow, displayed as #pending jobs versus wall time for the flocked
mode.
m In this comparison, the flocked jobs running on the much larger resource
pool which had, consequently, more available slots, finished an order of
magnitude more quickly: ~25 seconds (flocked) versus 240 seconds

(local). This is a measure of how quickly resources can be harnessed
and completed, compared local (quicker, but more limited) resources.

Sliced Flock

12000

10000

£000

Seresil
Series11
Series12
Series13

000

Jobs Pending

Series15
Series16
Series17
Series18

4000 f—

Series1d
Series20
Seres21
Series22
T S| Series23
1 4 T 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 65 58 61 &4 67 70 73 76 VG 82 85 Series2d
30 5 slice Series25

2000

ATLAS CONNECT PANDA

The goal is to provide a bridge between Panda job management services and ATLAS Connect
resources. This would resemble the long-discussed “US Queue”. The real value added for this
approach is to extend the reach of Panda to off-grid locations on campus clusters which don’t
have an OSG compute element. To be deployed.

Components

AutoPyFactory service

ANALY_CONNECT_US - an analysis queue

CONNECT_US _PROD - a production queue

MWT2 Storage Element (to associate with the queues)

Resources: initially BNL, MWT2, AGLT2 (for beyond-pledge analysis processing while
testing the system).

e 12/31/2013: Stampede at TACC is becoming available with a startup allocation already
granted. Parrot is used to mount CVMFS. Peter has finished a test using Parrot and a
full reconstruction from RAW data. Autopyfactory will be used to submit Panda pilots to a
Stampede (BOSCO) submit factory, similar to T3 factories. More on this below.

Usage

e AutoPyFactory submits pilots across multiple ATLAS Connect resources, choosing only
pilot-capable resources which meet the minimum requirements (e.g. HAS_CVMFS).

e Users submit jobs as usual from their Tier3, or wherever, using prun or pathena,
selecting ANALY _CONNECT_US.

e Pilots communicate to the ANALY_CONNECT_US queue in the normal way; the MWT2
SE can be used as the output storage element.

~N
‘ CONNECT panda

A
T
L
A
S

, connect.usatlas.org

Tierl
|

A Tier2s pilot =

FaxBox nnrial — .|
faxbox.usatlas.org rEm——e
Amazon cloud

AutoPyFactory

pilot.usatlas.org
g L} pile w il

i % pile W ik
pillot pilot pilot

Campus Grids

Local Tier3 Center ANALY

\ CONNECT)

AUTOPYFACTORY (APF)

Local Pilot Factory
The essential purpose for the APF is to provide a local source of ATLAS pilots thus avoiding the

need for a full-fledge grid compute element. Note in this instance APF will submit pilots using
multiple sites using HTCondor as opposed to (grid-based) HTCondor-G.

Instructions from John Hover

The page in the ATLAS Twiki:
https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/AutoPyFactory

https://www.google.com/url?q=https%3A%2F%2Ftwiki.cern.ch%2Ftwiki%2Fbin%2Fviewauth%2FAtlasComputing%2FAutoPyFactory&sa=D&sntz=1&usg=AFQjCNGLbzIvhNBqNSI0LFWzwMq_w1dn5A

But primarily you want to follow the documentation in the distribution:

http://svnweb.cern.ch/quest/panda/panda-autopyfactory/current/INSTALL-ROOT

Point at the testing repo, and you'll be installing
panda-autopyfactory
panda-autopyfactory-tools

wrapper (use version 0.9.10 within the RPM--it contains more than one)

Suitable wrapper argument configuration is already in the sample queues.conf-example file. | just
added a Condor Local example to the queues.conf-example file in SVN:

http://svnweb.cern.ch/guest/panda/panda-autopyfactory/current/etc/queues.conf-example

https://www.google.com/url?q=https%3A%2F%2Ftwiki.cern.ch%2Ftwiki%2Fbin%2Fviewauth%2FAtlasComputing%2FAutoPyFactory&sa=D&sntz=1&usg=AFQjCNGLbzIvhNBqNSI0LFWzwMq_w1dn5A
http://www.google.com/url?q=http%3A%2F%2Fsvnweb.cern.ch%2Fguest%2Fpanda%2Fpanda-autopyfactory%2Fcurrent%2FINSTALL-ROOT&sa=D&sntz=1&usg=AFQjCNEkrzLnXIRBEOS8nAA9NNb1XjMzkQ
http://www.google.com/url?q=http%3A%2F%2Fsvnweb.cern.ch%2Fguest%2Fpanda%2Fpanda-autopyfactory%2Fcurrent%2FINSTALL-ROOT&sa=D&sntz=1&usg=AFQjCNEkrzLnXIRBEOS8nAA9NNb1XjMzkQ
http://www.google.com/url?q=http%3A%2F%2Fsvnweb.cern.ch%2Fguest%2Fpanda%2Fpanda-autopyfactory%2Fcurrent%2Fetc%2Fqueues.conf-example&sa=D&sntz=1&usg=AFQjCNGGHQzQc-ojSk6uaXpclGfSf9NQgw

