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How do you find the Higgs boson? 

•4/9 

•5.000.000 Gb data 

•2.000.000.000.000 collisions •4/9 

•Higgs in 1 on 10.000.000.000 collisions 

Higgs! 

Statistical analysis of all collisions 



Particle physics: Elementary particles & Forces  

Building blocks of matter 

Messengers 

of forces 

‘Something else’ 



What do we know about the Higgs boson? 

• Key ingredient of the Standard Model 

• Special role: origin of mass of elementary particles 

– Space filled invisible with omni-present Higgs field.  

Mass of elementary particles is consequence of interaction of particles with 

this field 

– Large particle mass  strong coupling to Higgs field 

small particle mass  weak coupling to Higgs field 

• Peter Higgs: 

field  particle 

– Particle manifestation 

of the Higgs field, with  

same properties as field 

– If you have access to  

Higgs particles you can 

directly measure coupling 

strength to other particles 
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Peter Higgs 



Making a Higgs boson - theory 

• Theory: if Higgs boson exists you can make it in high-energy 

particle collisions 

H Higgs production according  

to the Standard Model 

(one of the possibilities) 

Higgs-top quark 

coupling 

Higgs-W boson 

coupling 



Other types of Higgs decays 

• So far showed one decay (H  WW), but many other types of 

decays can happen. 

– Relative rate of ocurrence (and most promising channel) depend on mass 

of Higgs boson (which was a priori unknown, but we now know is 125 GeV) 
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What does a Higgs boson look like, and how often? 
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A more accurate picture of what happens 

‘Flying garbage’ 

‘Hard Scatter’ 

‘Secondary scatter’ 

? 
H 

Proton-Proton collision at the LHC 



A typical proton-proton collision 
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lepton 

lepton 



Find the Higgs – need something stands out, e.g. 4 leptons 
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Find the Higgs – need something stands out, e.g. 4 leptons 
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But collision with a produced and decayed  

Higgs boson are extremely rare: 

 

In 2011+2012 dataset you have  

  ~2.500.000.000.000.000.000 collisions 

  ~500.000 with Higgs boson [ 1 : 5.000.000.000 ] 

  ~500 with recognizable Higgs boson [ 1 : 5.000.000.000.000 ]  



Online selection and trigger 

• You have already seen in previous lectures that a large part of 

the pre-selection of collision events is performed in real-time 

(‘the trigger’) 

– Reduces 40 MHz LHC collision rate to ~600Hz of selected events 

– Still leaves you with a few billion events written to disk/tape 

• Goal: find the O(100) collision with a Higgs decay in a collection 

of a few billion events 

• Open questions 

– How do you know what events with Higgs collisions look like? 

– Can you ever be sure that any given selected collision really contained a 

Higgs decay (since you can only see its decay products)? 

– How do you formulate evidence of the existence of a Higgs particle, if you 

can never really prove what happened ‘inside’ a collision? 
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How do you know what events with a Higgs looks like? 
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Simulation of high-energy 

physics process 

Simulation of ‘soft physics’ 

physics process 

Simulation of ATLAS 

detector 

Reconstruction  

of ATLAS detector 

LHC data 

Simulated  

LHC event 

with  

HZllll  

decay 

Observed LHC event 

with llll (4 leptons) 

But is it HZZllll  

or [somethinge else]  llll? 



Quantum mechanics – you are never sure what 

happened… 
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Higgs boson 



Quantum mechanics – you are never sure what 

happened… 
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no 

Higgs boson 



But properties of leptons will still tell you something… 

• Higgs: 4 leptons originate  

from decay of a single particle 

• Background – leptons originate  

from decay of unrelated particles 

 

• The 4-lepton invariant mass 

will tell… 

 

 

– No Higgs: m4l = ~random 

– Higgs: m4l = Higgs boson mass 

 

• Look for peak in m(4l),  

but don’t a priori know where! 

• Still – no single event provides 

conclusive evidence! 
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Statistical formulation of evidence 

• When a single observation can – for fundamental quantum-

mechanical reasons – not be conclusive, but can still make a 

probabilistic statement (‘statistics’) 

• Start of with a simple analogy using dice 

We have a dice. Q: is it a regular dice, or a fake one? 

 

 

 

 

 

 

 

• Quantum aspect: we can’t see the dice, we can only ask 

someone to roll it for us (repeatedly) and report the outcome 
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Regular dice Fake dice 



Statistical formulation of evidence 

• How can we ‘discover’ that the dice is fake? 

• Start with formulation of two competing theories 

– Hypothesis 1 – Regular dice ‘no Higgs’ 

– Hypothesis 2 – Fake dice (always 6) ‘Higgs’ 

 

• Perform an experiment – result: score ‘6’ 

• What can we say about nature of dice? 

– Prob(score 6|fake)=100% Thus dice is fake? 

– But prob(score 6 |normal) = 1:6   

Probability of ‘accidental’ score 6 with regular dice fairly large 

 

• No clear conclusion  need more data  
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Statistical formulation of evidence 

• Repeat experiment twice – result: 3 x score ‘6’ 

– Prob(3x score 6|fake) = 100% 

– Kans(3x score 6|normal) = 1:(6x6x6) = 1:216  

 

• Becoming more convinced that dice might be fake, but not 

absolutely sure. 

• Q: How sure do you want to be? 

• A: Depend on prior credibility of theory you’re testing. 

– If you’re aiming to discovery existence of Martians, bar is very high 

as theory is a priori very incredible 

– If you’re aiming to discovery a new particle that theory clearly predicts, bar 

might be lower 

• Repeat experiment again twice – result: 5 x score ‘6’ 

– Prob(5x score 6|fake) = 100% 

– Kans(5x score 6|normal) = 1:(6x6x6x6x6) = 1:7776  
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Statistical formulation of evidence 

• Usual standard in particle physics is known as ‘5 sigma’  

– Defined as probability of a unit Gaussian distribution to deviate by >5, 

which has a probility of  2.8x10-7 

– In other words: probability that your ‘background-only’ hypothesis results in 

observed signal must be less than ~1:3.5 million 

• Using the ‘5 sigma’ standard you would accept only 9 

consecutive dice rolls with score 6 as evidence for a fake dice  

 

 

 

 

 

• Nomenclature – The probability obtain your result under the 

‘null’ (background hypothesis) is called the ‘p-value’  
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Statistical formulation of evidence 

• Usual standard in particle physics is known as ‘5 sigma’  

– Gaussian sigmas ‘Z-score’ are simply another way to conventiently express 

small probabilities 

– Relates probabilities to the ‘normal (Gaussian) distribution’ 

– For example a ‘3 sigma’ excess is an excess where the p-value is 0.001  

(since only 0.001 of the Gaussian curve is beyond 3 sigma)     
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From dice to LHC collisions 

• Dice provide easy example for calculating odds, but how do 

these calculations apply to LHC collisions 

• Each dice has six possible outcomes: score 1 … score 6 

• What are the possibly outcomes of LHC collisions? Number of 

possibilities is almost infinite… How do we deal with this? 

Wouter Verkerke, NIKHEF  

Need 

(automated) 

event classification... 



Event classification 

• For simple Higgs decay signatures can do event classification  

‘by hand’ (using our physics knowledge) 

– Classify events 2 types: ‘signal-like’ (selected) and ‘background-like’ 

(discarded) 

• For example: decay HZZllll can be selected by requiring 

events to have four lepton tracks what appear to originate from Z 

decays. 

– Signal-like events: all events with 4 leptons with certain criteria 

– Background-like events: all other events 

• Reduces properties of each LHC collision event to a single 

Boolean 

• But we analyze all LHC collision events:  

output of full analysis is count of selected signal-like events 

 Output of full analysis is characterized by a integer number 

• Compare observed number of selected events with expectation of 

selected event count for Higgs hypothesis and no-Higgs 

hypothesis 
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Statistical evidence from dice counting 

• Ilustration of event counting with dice. First consider rolling a single 

dice.  

1   2   3   4   5   6 1   2   3   4   5   6 

 Count of score 6  Count of score 6 

0   1   2   3   4   5 1   2   3   4   5   6 

 Score  Score 

•   Now rolls dice 4 times (=1 expt), count number of sixes in each expt 

<Nsix>=4/6 <Nsix>=4 

‘Binomial distribution’ ‘Binomial  

distribution’ 



Statistical evidence from dice counting 

• Ilustration of event counting with dice. First consider rolling a single 

dice.  

1   2   3   4   5   6 1   2   3   4   5   6 

 Count of score 6  Count of score 6 

0   1   2   3   4   5 1   2   3   4   5   6 

 Score  Score 

•   Now rolls dice 4 times (=1 expt), count number of sixes in each expt 

<Nsix>=4/6 <Nsix>=4 

‘Binomial distribution’ ‘Binomial  

distribution’ 

 Suppose we observe Nsix=4 

 

 Can now trivially obtain probabilities from score distributions: 

 

   P(Nsix=4|regular) = 0.00077         P(Nsix=4|fake)=1 



From dice counting to LHC event counting 

• Each experiments rolls dice 4 times, count number of number of 

sixes 

•  

 

 

 

 

 

• Each expt collects 2 years of LHC data, count # of four-lepton 

events  

 

 Count of score 6  Count of score 6 

0   1   2   3   4   5 1   2   3   4   5   6 

 Observed #selected events  Observed #selected events 

PREDICTION 1: 

Number of  

LHC events 

with 4 leptons 

for theory with 

no Higgs boson 

PREDICTION 2: 

Number of  

LHC events 

with 4 leptons 

for theory with 

Higgs boson 

‘Poisson  

distribution’ 

‘Binomial distribution’ ‘Binomial  

distribution’ 

‘Poisson  

distribution’ 

<Nsix>=4/6 <Nsix>=4 

<Nsel>=3 <Nsel>=7 



Calculating the expected outcome of an experiment 
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Simulation of high-energy 

physics process 

Simulation of ‘soft physics’ 

physics process 

Simulation of ATLAS 

detector 

Reconstruction  

of ATLAS detector 

LHC data 
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<Nsel>=3 if Higgs doesn’t exist 

<Nsel>=7 if Higgs does exist 

Observed <Nsel>=11  



Event counting for Higgs – example with ATLAS HZZlll 

signal 

• Now apply calculation of 

probabilities of event counting 

to a realistic example: 

ATLAS HZZllll sample 

• Count events in yellow band 
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N(observed) = 13 

 

Expectation – no Higgs 

Poisson distribution with <N>=4.5 

 

 prob(N≥13) = 0.08% 

 

Expectation – SM Higgs 

Poisson distribution with <N>=10 

 

prob(N≥13) = 21%  



Doing better than counting – multivariate analysis & machine learning 

• Example of HZZlll was chosen because it lends itself well to 

a simple counting analysis, because signal is quite clean and 

selection criteria are relatively simple, but doesn’t give enough 

statistical evidence to claim a discovery. 

• How can we do better? 

1. Design ‘better’ event selection (using more information that 

‘simple count’ of leptons) 

2. Exploit more information in statistical analysis of selected 

events 

3. Look for Higgs in additional 

channels that are more challenging 
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Machine learning example – Boosted decision trees 

• Instead of a phycisist using his time and knowledge to design a clever 

event selection  Feed information about properties of signal and 

background algorithm to a ‘machine learning’ algorithm that can design 

the ‘best’ selection for you 

– Can (in principle) give better results, as much more information  

can be considered and can be used 

– But careful supervision and validation is needed – machine learning treats all 

provided properties of signal and background events as ‘exact’, whereas in reality 

simulation of certain event properties may be quite uncertain 

• Popular technique at LHC is technique of ‘boosted decision trees’ 

• Decision tree = flow chart of binary selection cuts 

– Conceptualy similar to ‘manual’ 4-lepton selection illustrated for HZZ selection 

– But now let learner automatically decide on what observable event property~ 

best discriminates between signal and background  
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Event properties that can be used in machine learning 
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* Momentum (pT) and direction of  

  - Electrons, Muons, Taus in event 

  - Jets in event 

  - Flavor-tagged jets in event 

  - Photons in event 

  - Missing energy in event  * Open angles between objects 

* Invariant masses of objects 

(uses opening angles and momenta) 

Global event properties 

  - Summed energy (scalar or vectorial) 

  - Energy flows and moments 

 - Properties of hemispheres etc… 

 



Building a tree – splitting the data 

• Essential operation :  

splitting the data in 2 groups using a single cut, e.g. HT<242 

 

 

 

 

 

 

 

 

 

• Goal: find ‘best cut’ as quantified through best separation of 

signal and background (requires some metric to quantify this) 

• Procedure:  

1) Find cut value with best separation for each observable 

2) Apply only cut on observable that results in best separation 

 

 



Building a tree – recursive splitting 

• Repeat splitting procedure on sub-samples of previous split 

 

 

 

 

 

 

 

 

 

• Output of decision tree:  

– ‘signal’ or ‘background’ (0/1) or  

– probability based on expected purity of leaf  (s/s+b) 



Machine learning with Decision Trees  

• Goal: Minimize ‘Impurity Function’ of leaves  

– Impurity function i(t) quantifies (im)purity of a sample, but is not uniquely 

defined 

– Simplest option: i(t) = misclassification rate 

 

 

 

 

 

 

• For a proposed split s on a node t, decrease of impurity is 

 

 

 

• Take split that results in largest Δi  

 

 

 

•Signal purity 
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•Impurity 

of sample 

before split 

•Impurity 

of ‘left’ 

sample 

•Impurity 

of ‘right’ 

sample 



Machine learning with Decision Trees  

• Stop splitting when 

– not enough improvement (introduce a cutoff Di) 

– not enough statistics in sample, or node is pure (signal or background) 

• Example decision tree from learning process 
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Machine learning with Decision Trees  

• Given that training happens on finite samples of simulated signal 

and background events, splitting decisions are based on ‘empirical 

impurity’ rather than true ‘impurity’  risk of overtraining exists 

 

 

 

 

 

 

• Can mitigate effects of overtraining by ‘pruning’ tree a posteriori 

– Expected error pruning (prune weak splits that are consistent with original leaf 

within statistical error of training sample) 

– Cost/Complexity pruning (generally strategy to trade tree complexity against 

performance) 
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•Pruning 



Concrete example of a trained Decision Tree 
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•Signal 

•Background 

•1 

•2 

•3 

•1 

•2 

•1 •3 •2 

•1 
•2 



Boosted Decision trees 

• Decision trees largely used with ‘boosting strategy’ 

• Boosting = strategy to combine multiple weaker classifiers into a 

single strong classifier 

 

• First provable boosting algorithm by Schapire (1990) 

– Train classifier T1 on N events 

– Train T2 on new N-sample,  

half of which misclassified by T1 

– Build T3 on events where T1 and T2 disagree 

– Boosted classifier: MajorityVote(T1,T2,T3) 

 

• Most used: AdaBoost = Adaptive Boosting (Freund & Shapire 

‘96) 

– Learning procedure adjusts to training data to classify it better 

– Many variations on the same theme for actual implementation 
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AdaBoost 

• Schematic view of iterative algorithm 

– Train Decision Tree on (weighted) signal and background training samples 

– Calculate misclassification rate for Tree K (initial tree has k=1) 

 

  

 

 

 

– Calculate weight of tree K in ‘forest decision’ 

– Increase weight of misclassified events in Sample(k) to create Sample(k+1) 

 

 

 

• Boosted classifier is result is performance-weighted ‘forest’ 
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•“Weighted average 

of isMisclassified over  

all training events” 

•“Weighted average 

of Trees by their performance” 



AdaBoost by example 

• So-so classifier (Error rate  = 40%) 

 

– Misclassified events get their weight multiplied by exp(0.4)=1.5  

– Next tree will have to work a bit harder on these events 

 

• Good classifier (Error rate  = 5%) 

 

– Misclassified events get their weight multiplied by exp(2.9)=19 (!!)  

– Being failed by a good classifier means a big penalty: must be a difficult 

case 

– Next tree will have to pay much more attention to this event and try to get it 

right 

 

 

• Note that boosting usually results in (strong) overtraining 

– Since with misclassification rate will ultimately go to zero 

Wouter Verkerke, NIKHEF 



Example of Boosting  
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•T0(x,y) 

•T1(x,y) 

•T2(x,y) 

•T3(x,y) •T4(x,y) 
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Top Workshop, LPSC, Oct 18–20, 2007  
A. Hoecker: Multivariate Analysis with TMVA  

•What is TMVA 

ROOT: is the analysis framework used by most (HEP)-physicists 

Idea: rather than just implementing new MVA techniques and 

making them available in ROOT (i.e., like TMultiLayerPercetron 

does): 

Have one common platform / interface for all MVA classifiers 

Have common data pre-processing capabilities 

Train and test all classifiers on same data sample and evaluate consistently  

Provide common analysis (ROOT scripts) and application framework 

Provide access with and without ROOT, through macros, C++ executables 

or python  



Top Workshop, LPSC, Oct 18–20, 2007  
A. Hoecker: Multivariate Analysis with TMVA  

•T M V A   C o n t e n t  

  Currently implemented classifiers  
 

   Rectangular cut optimisation 

   Projective and multidimensional likelihood estimator 

   k-Nearest Neighbor algorithm 

   Fisher and H-Matrix discriminants 

   Function discriminant 

   Artificial neural networks (3 multilayer perceptron impls)              
  

   Boosted/bagged decision trees 

   RuleFit 

   Support Vector Machine 

  Currently implemented data preprocessing stages: 
 

   Decorrelation 

   Principal Value Decomposition 

   Transformation to uniform and Gaussian distributions 



Top Workshop, LPSC, Oct 18–20, 2007  
A. Hoecker: Multivariate Analysis with TMVA  

•A Toy Example (idealized) 

Use data set with 4 linearly correlated Gaussian distributed 
variables: 

•----------------------------------------  
Rank : Variable   : Separation  
----------------------------------------  
    

•      1 : var4          : 0.606  
    
•      2 : var1+var2 : 0.182  
   
•      3 : var3          : 0.173  
     
•      4 : var1-var2  : 0.014 
•  

---------------------------------------- 



Top Workshop, LPSC, Oct 18–20, 2007  
A. Hoecker: Multivariate Analysis with TMVA  

•Preprocessing the Input Variables 

Decorrelation of variables before training is useful for this 
example 

Note that in cases with non-Gaussian distributions and/or nonlinear 
correlations decorrelation may do more harm than any good 



Top Workshop, LPSC, Oct 18–20, 2007  
A. Hoecker: Multivariate Analysis with TMVA  

•             Evaluating the Classifier Training (II)        

Check for overtraining: classifier output for test and training 
samples … 
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•             Evaluating the Classifier Training (V)        

Optimal cut for each classifiers … 

Determine the optimal cut (working 
point) on a classifier output  
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A. Hoecker: Multivariate Analysis with TMVA  

•Receiver Operating Characteristics (ROC) Curve 

Smooth background rejection versus signal 

efficiency curve: (from cut on classifier output) 
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A. Hoecker: Multivariate Analysis with TMVA  

•Example: Circular Correlation 

• Illustrate the behavior of linear and nonlinear classifiers  

•Circular correlations 
•(same for signal and background) 



Top Workshop, LPSC, Oct 18–20, 2007  
A. Hoecker: Multivariate Analysis with TMVA  

•The “Schachbrett” Toy 

• Performance achieved without parameter tuning: 
PDERS and BDT best “out of the box” classifiers 

• After specific tuning, also SVM und MLP perform 
well 

• Theoretical maximum 



Example of BDT use in Higgs 

• Distribution of BDT score in search for for Hττ events 
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Signal expectation x 50 

Signal-like events    Bkg-like events  

Simplest analysis strategy 

is to select events based on BDT 

score (e.g. BDT>0.7) and then 

perform a counting analysis, 

 

but clearly throwing away 

some information (and signal events) 



Outline of analysis procedure so far 
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MC Simulated 

Events (sig,bkg) 

All available  

“real data” 

Event 

selection 

(cuts, NN, 

BDT) 

Final Event 

Selection (data) 
Final Event 

Selection (MC) 

Helps 

to define 

selection 

Statistical 

Inference 

‘Hand-designed selection’ 

‘Machine-learned selection’ 

(with careful supervision) 

Event counting (so far) 



Beyond event counting – exploiting all information 

• Both Hττ and HZZ searches illustrated that more 

discriminating information is available in each event that is used 

in the selection 
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Events in center of window have higher  

probability to be signal than at edge  

 ignored in counting analysis 

Hypothetical cut on BDT score 

(e.g. BDT>0.7) throws away some signal 

events  

 Can we use all of this information to increase our sensitivity? 



Beyond counting analysis – building likelihood models 

• Can we include all such extra information in the statistical 

inference (i.e. calculation of the p-value) 

• Example of probabilistic interpretation of results with dice and 

event counting were ‘light’ on mathematical detail. 

• If we work out the math we see that include additional 

information is mathematically straightforward (although formulas 

for practical cases can become very complex) 
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Probability distribution for  

counting experiment 

P(N | l) =
lNe-l

N!

Observed event count  

Expected  

(average) count  



Beyond counting analysis – building likelihood models 

• How do we build a probability model for a histogram? 

• Note that every bin is in effect a counting experiment 
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P(N | l) =
lNe-l

N!

= Poisson(N i |m × si +b1
i +b2

i +b3

i )

Expected event rate is sum of expected 

signal and background rates 



Beyond counting analysis – building likelihood models 

• How do we build a probability model for a histogram? 

• Note that every bin is in effect a counting experiment 

 

Wouter Verkerke, NIKHEF  

P(N | m) =
mNe-m

N!

= Poisson(N i |m × si +b1
i +b2

i +b3

i )

Expected event rate is sum of expected 

signal and background rates 



Beyond counting analysis – building likelihood models 

• How do we build a probability model for a histogram? 

• Note that every bin is in effect a counting experiment 

 

 

 

 

 

 

 

 

 

 

• Note: the function P(N|μ) is called the Likelihood function 
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Beyond counting analysis – building likelihood models 

• How do we build a probability model for a histogram? 

• Note that every bin is in effect a counting experimen 

t 

 

 

 

 

 

 

 

 

 

• Note: the function P(N|μ) is called the Likelihood function 
Wouter Verkerke, NIKHEF  

Note that signal rate in function was cleverly written as a global scale 

parameter μ times the nominal prediction for each bin 

 

This allows us to use the same likelihood function to describe  

 

* the Standard Higgs model  

  (nominal signal +  background  choose μ=1) 

* The no-Higgs model 

  (background only  choose μ=0) 

* non-standard Higgs models 

  (choose μ<1 or μ>1 to have less or more Higgs produced) 



Event counting for Higgs – example with ATLAS HZZlll 

signal 

• Now apply calculation of 

probabilities of event counting 

to a realistic example: 

ATLAS HZZllll sample 

• Count events in yellow band 
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N(observed) = 13 

 

Expectation – no Higgs 

Poisson distribution with <N>=4.5 

 

 prob(N≥13) = 0.08% 

 

Expectation – SM Higgs 

Poisson distribution with <N>=10 

 

prob(N≥13) = 21%  



Calculating the p-value for distributions 

• For distributions replace N(observed) 

by a Likelihood ratio 
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Numeric example: 

logλ0(observed) = 6.8 

 

Expectation – no Higgs 

Asymptotically a 2log(χ2) distribution  

prob(q>…) = pχ2(2*6.8,1)=0.02% (‘3.5 σ’) 

 

Expectation – SM Higgs 

Asymptotically a non-central  

Chi-squared distribution 

 



Putting even more information in 

• So far I showed Likelihood functions that correspond to  

1-dimensional distributions 

 

 

 

 

 

 

 

 

• But you can build much more complex models that look at many 

distributions simultaneously. Difficult to visualize, but also not 

needed, p-value (and discovery claim) only relies on you being 

able to calculate ratio of two likelihoods functions  
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Example combining information of HZZ and Hττ 

• If you have a Likelihood function for your HZZ analysis and a 

Likelihood function of your Hττ analysis, you can combined 

both channels in a ‘joint likelihood’ by simply multiplying them 

(as we did for the bins within a channel) 
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Higgs discovery strategy – add everything together 
7/10 

HZZllll Hττ HWWμνjj 

+… 

Assume SM rates 

L(m,q ) = LH®WW (mWW ,q ) ×LH®gg (mgg ,q ) ×LH®ZZ (mZZ,q ) ×…

Joint likelihood model for all observation channels 



Further complexity - dealing with systematic 

uncertainties 

• So far all action was geared to improve sensitivity of analysis 

– Use Machine Learning to optimize event selection using many observables 

– Use complex Likelihood models to exploit additional information inside 

selected events, and to combine multiple channels together 

 

• But we have so far ignored an important scientific aspect 

– Not all our knowledge about signal and background precise 

– Yet, both ML event selection, and Likelihood models so far treat information 

provided as ‘the exact truth’ 

 

• Main scientific challenge – incorporate effect of ‘systematic 

uncertainties’ into the analysis (and probability calculations)  
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Understanding signal and background 
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The simulation workflow and origin of uncertainties 

Wouter Verkerke, NIKHEF •Wouter Verkerke, NIKHEF  
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Typical systematic uncertainties in HEP 

• Detector-simulation related 

– “The Jet Energy scale uncertainty is 5%” 

– “The b-tagging efficiency uncertainty is 20% for jets with pT<40” 

 

• Physics/Theory related 

– The top cross-section uncertainty is 8% 

– “Vary the factorization scale by a factor 0.5 and 2.0 and consider the 

difference the systematic uncertainty” 

– “Evaluate the effect of using Herwig and Pythia and consider the difference  

the systematic uncertainty” 

 

• MC simulation statistical uncertainty 

– Effect of (bin-by-bin) statistical uncertainties in MC samples  

Wouter Verkerke, NIKHEF 



How do we take uncertainties into account 

• In (Machine Learned) event selections 

– Essentially very difficult.  

– Main strategy – only use ‘safe’ observables in selection process (those with 

little uncertainty on them), and make selection not to tight (so that a small 

shift in e.g. a calibration does not change the fraction of selected signal by 

much) 

• In Likelihood-based calculation of p-values 

– In principle straightforward! 

– Likelihood models can have parameters that can be weakly that represent 

the known systematic uncertainties on various quantities  

Wouter Verkerke, NIKHEF  

L(m) = Poisson(NSR |m × s+b)

Likelihood model for counting experiment with exactly known background 

Likelihood model for counting experiment with 8% uncertainty on background 



•W. Verkerke 

We have many systematic uncertainties! 
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• Leading-order framework approximation 

• Signal process factorization/normalization 

scales 

• Background process scales 

• Quark/gluon content of the proton 

• Background process cross-sections 

• Higgs branching fractions 

• Multi-leg MC generator matching parameters 

• Massive/massless treatment of heavy flavors 

• Measured mass of the Higgs boson 

• Choice of generator program 

• Parton showering model 

• ME/PS matching scales 

• Heavy flavor content of jets 

… 

Theoretical uncertainties 
• 

 

• Jet energy scale calibration 

• Jet resolution uncertainties 

• Jet reconstruction efficiency 

• Electron reconstruction efficiency 

• Muon reconstruction efficiency 

• Electron momentum scale 

• Muon momentum scale 

• Luminosity 

• b-jet flavor tagging efficiency 

• c-jet flavor tagging efficiency 

• tau reconstruction efficiency 

• Missing energy resolution 

• Reco fake estimates 

• Trigger efficiencies 

• Pileup effects and model uncertainty 

• Simulation transport uncertainties 

… 

Detection uncertainties 



•W. Verkerke 

We have many systematic uncertainties! 

H 
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•proton •proton 

 

 

 

• Leading-order framework approximation 

• Signal process factorization/normalization 

scales 

• Background process scales 

• Quark/gluon content of the proton 

• Background process cross-sections 

• Higgs branching fractions 

• Multi-leg MC generator matching parameters 

• Massive/massless treatment of heavy flavors 

• Measured mass of the Higgs boson 

• Choice of generator program 

• Parton showering model 

• ME/PS matching scales 

• Heavy flavor content of jets 

… 

Theoretical uncertainties 
• 

 

• Jet energy scale calibration 

• Jet resolution uncertainties 

• Jet reconstruction efficiency 

• Electron reconstruction efficiency 

• Muon reconstruction efficiency 

• Electron momentum scale 

• Muon momentum scale 

• Luminosity 

• b-jet flavor tagging efficiency 

• c-jet flavor tagging efficiency 

• tau reconstruction efficiency 

• Missing energy resolution 

• Reco fake estimates 

• Trigger efficiencies 

• Pileup effects and model uncertainty 

• Simulation transport uncertainties 

… 

Detection uncertainties 
 

   Mathematical form of Likelihood model will get very complex 

 

 

 

 

 

   Hundreds of additional parameters modeling systematic uncertainties 

   (many systematic uncertainties require >1 parameter)… 

    

 



RooFit – Focus: coding a probability density function 

• Focus on one practical aspect of many data analysis in HEP: 
How do you formulate your p.d.f. in ROOT  

– For ‘simple’ problems (gauss, polynomial) this is easy 
 
 

 

 

 

 

 

 

 

 

 

 

– But if you want to do unbinned ML fits, use non-trivial functions, or work with 
multidimensional functions you quickly find that you need some tools to help 
you 

1 



RooFit – a toolkit to formulate probability models in C++ 

• Key concept: represent individual elements of a mathematical 

model by separate C++ objects 

Wouter Verkerke, NIKHEF  

variable RooRealVar 

function RooAbsReal 

PDF RooAbsPdf 

space point RooArgSet 

list of space points RooAbsData 

integral RooRealIntegral 

RooFit class Mathematical concept 
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RooFit core design philosophy 

• Build likelihood function out of many small software objects, rather 

than a monolithical double L(double * params) function 

Gauss(x,μ,σ) 

RooRealVar x RooRealVar y RooRealVar z 

RooGaussian g 

Math 

RooFit 

diagram 

RooFit 

code 

6 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar m(“m”,”y”,0,-10,10) ; 
RooRealVar s(“s”,”z”,3,0.1,10) ; 
RooGaussian g(“g”,”g”,x,m,s) ; 



RooFit core design philosophy  

• Build likelihood function out of many small software objects, 

rather than a monolithical double L(double * params) 

function 

 

RooRealVar x RooRealVar m RooRealVar s 

RooGaussian g 

6 

RooWorkspace (keeps all parts together) 

Gauss(x,μ,σ) 
Math 

RooFit 

diagram 

RooFit 

code 
RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar m(“m”,”y”,0,-10,10) ; 
RooRealVar s(“s”,”z”,3,0.1,10) ; 
RooGaussian g(“g”,”g”,x,m,s) ; 
RooWorkspace w(“w”) ; 
w.import(g) ; 



RooFit core design philosophy - Workspace 

• Alternatively, a simple math-like ‘factory language’ can quickly 

populates a workspace with the same objects 

RooRealVar x RooRealVar m RooRealVar s 

RooGaussian g 

RooWorkspace w(“w”) ; 

w.factory(“Gaussian::g(x[-10,10],m[0],s[5])”) ; 

6 

RooWorkspace 

Gauss(x,μ,σ) 
Math 

RooFit 

diagram 

RooFit 

code 



RooFit implements normalized probability models 

• Normalized probability (density) models are the basis of all 
fundamental statistical techniques  

– Defining feature: 
 
 
 
 
 
 
 
 

 

• Normalization guarantee introduces extra complication  
in calculation, but has important advantages 

– Directly usable in fundamental statistical techniques 

– Easier construction of complex models (will shows this in moment) 

• RooFit provides built-in support for normalization, taking away down-
side for users, leaving upside  

– Default normalization strategy relies on numeric techniques, but user can specify 
known (partial) analytical integrals in pdf classes. 

Wouter Verkerke, NIKHEF  
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Abstract interfaces make fitting and toy generation easy 

• Can make fits of models to data, and generate simulated data 

from toys with one-line comments, regardless of model 

complexity 

Wouter Verkerke, NIKHEF  

RooAbsPdf 

RooDataSet 

RooAbsData 

model.fitTo(data) 

data = model.generate(x,1000) 

Fitting Generating 



The power of conditional probability modeling 

• Take following model f(x,y):  

what is the analytical form? 

 

 

 

 

 

 

 

• Trivially constructed with 

(conditional) probability 

density functions!  

Wouter Verkerke, NIKHEF  

Gauss f(x|a*y+b,1) 

Gauss g(y,0,3) 

F(x,y) = f(x|y)*g(y) 



Coding a conditional product model in RooFit 

• Construct each ingredient with a single line of code 

Wouter Verkerke, NIKHEF  

RooRealVar x(“x”,”x”,-10,10) ; 

RooRealVar y(“y”,”y”,-10,10) ; 

RooRealVar a(“a”,”a”,0) ; 

RooRealVar b(“b”,”b”,-1.5) ; 

 

RooFormulaVar m(“a*y+b”,a,y,b) ; 

RooGaussian f(“f”,”f”,x,m,C(1)) ; 

 

RooGaussian g(“g”,”g”,y,C(0),C(3)) ; 

 

RooProdPdf F(“F”,”F”,g,Conditional(f,y)) ; 

 

Gauss f(x,a*y+b,1) 

Gauss g(y,0,3) 

F(x,y) = f(x|y)*g(y) 

Note that code doesn’t care if input expression is 

variable or function! 



Advanced modeling building  – template morphing 

• At LHC shapes are often derived from histograms, instead of 

relying on analytical shapes . Construct parametric from 

histograms using ‘template morphing’ techniques 

Parametric model: f(x|α) 

Input 

histograms 

from simulation 



Code example – template morphing 

• Example of template morphing 

systematic in a binned likelihood 

Wouter Verkerke, NIKHEF 
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// Construct template models from histograms 

w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ; 

w.factory(“HistFunc::s_p(x,hs_p)”) ; 

w.factory(“HistFunc::s_m(x,hs_m)”) ; 
 

// Construct morphing model 

w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ;  
 

// Construct full model 

w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]),Gaussian(0,alpha,1))”) ; 



From simple to realistic models: composition techniques 

• Realistic models with signal and bkg, and with control regions 

built from basic shapes using addition, product, convolution, 

simultaneous operator classes 

SUM PROD CONV SIMUL 

+ * 

= = = 
= 

Ä Å



Graphical example of realistic complex models 

variables 

function objects 

Expression graphs are 

autogenerated using 

 

pdf->graphVizTree(“file.dot”) 

 



Abstracting model building from model use - 2 

• Must be able to practically separate model building code from 
statistical analysis code. 

• Solution: you can persist RooFit models of arbitrary complexity in 
‘workspace’ containers 

• The workspace concept has revolutionized the way people share 
and combine analyses! 

Wouter Verkerke, NIKHEF  

RooWorkspace 

RooWorkspace w(“w”) ; 

w.import(sum) ; 

w.writeToFile(“model.root”) ; 

model.root 

Realizes complete and practical 

factorization of process of  

building and using likelihood functions! 



Using a workspace file given to you… 

Wouter Verkerke, NIKHEF  Wouter Verkerke, NIKHEF  

RooWorkspace 

// Resurrect model and data 

TFile f(“model.root”) ; 

RooWorkspace* w = f.Get(“w”) ; 

RooAbsPdf* model = w->pdf(“sum”) ; 

RooAbsData* data = w->data(“xxx”) ; 
 

// Use model and data 

model->fitTo(*data) ; 
 

RooPlot* frame =  
         w->var(“dt”)->frame() ; 

data->plotOn(frame) ; 

model->plotOn(frame) ; 



The Higgs discovery workflow 
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Hγγ HZZ HWW 
Detector 

and Theory 

knowledge 

Team of specialists 

design event selection, 

statistical analysis of 

selected events 

Team of specialists 

design event selection, 

statistical analysis of 

selected events 

Team of specialists 

design event selection, 

statistical analysis of 

selected events 

Lγγ(μ) LZZ(μ) LWW(μ) 

Team of specialists 

to combined component 

likelihoods into a single 

‘combined’ function 

Lmaster(μ)=Lγγ*LZZ*LWW 

Team of  

specialists 

on detector 

simulation 

performance 

and theory 

uncertainties 

Calculation of P-value(no-Higgs) 



The full ATLAS Higgs combination in a single workspace… 

F(x,p) 

x p 

Atlas Higgs combination model (23.000 functions, 1600 

parameters) 

Model has ~23.000 function objects, ~1600 parameters 

Reading/writing of full model takes ~4 seconds 

ROOT file with workspace is ~6 Mb 

 



RooStats – Statistical analysis of RooFit models  

• With RooFits one has (almost) limitless possibility to construct 

probability density models  

– With the workspaces one also has the ability to deliver  

such models to statistical tools that are completely  

decoupled from the model construction code.  

Will now focus on the design of those statistical tools 

• The RooStats projected was started in 2007 as  

a joint venture between ATLAS, CMS, the ROOT  

team and myself.  

Goal: to deliver a series of tools that can calculate  

intervals and perform hypothesis tests using a  

variety of statistical techniques 

– Frequentist methods (confidence intervals, hypothesis testing) 

– Bayesian methods (credible intervals, odd-ratios) 

– Likelihood-based methods 

Wouter Verkerke, NIKHEF  

Confidence intervals: [θ-, θ+],or  θ<X at 95% C.L.  

Hypothesis testing:  p(data|θ=0) = 1.10-7  



The result – evolution over time – July 2011 

• Full analysis and combination chain in place since 2011. 

• Since mass of Higgs boson was not a priori known 

and gives that properties of Higgs depends strongly on it, 

p-value (input to discovery declaration) calculated for a range 

of assumed Higgs masses (110-150 GeV)   

Wouter Verkerke, NIKHEF  Wouter Verkerke, NIKHEF  

Juli 2011 

‘p-value’ 



The result – evolution over time – December 2011 

• Full analysis and combination chain in place since 2011. 

• Since mass of Higgs boson was not a priori known 

and gives that properties of Higgs depends strongly on it, 

p-value (input to discovery declaration) calculated for a range 

of assumed Higgs masses (110-150 GeV)   

Wouter Verkerke, NIKHEF  Wouter Verkerke, NIKHEF  

December 2011 

‘p-value’ 



The result – evolution over time – April 2012 

• Full analysis and combination chain in place since 2011. 

• Since mass of Higgs boson was not a priori known 

and gives that properties of Higgs depends strongly on it, 

p-value (input to discovery declaration) calculated for a range 

of assumed Higgs masses (110-150 GeV)   

Wouter Verkerke, NIKHEF  Wouter Verkerke, NIKHEF  

April 2012 

‘p-value’ 



The result – evolution over time – June 2012 

• Full analysis and combination chain in place since 2011. 

• Since mass of Higgs boson was not a priori known 

and gives that properties of Higgs depends strongly on it, 

p-value (input to discovery declaration) calculated for a range 

of assumed Higgs masses (110-150 GeV)   

Wouter Verkerke, NIKHEF  Wouter Verkerke, NIKHEF  
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‘p-value’ 



The result – evolution over time – July 2012 

• Full analysis and combination chain in place since 2011. 

• Since mass of Higgs boson was not a priori known 

and gives that properties of Higgs depends strongly on it, 

p-value (input to discovery declaration) calculated for a range 

of assumed Higgs masses (110-150 GeV)   

Wouter Verkerke, NIKHEF  Wouter Verkerke, NIKHEF  

Juli 2012 

‘p-value’ 



July 4 – Declaration of discovery 
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After July 4 – A small party  



Summary 

• The discovery of the Higgs has been one of the most complex data 
analysis challenges performed in particle physics 

– No single Higgs decay signature was sufficiently powerful to result in a discovery 

– Due to the unknown Higgs mass it wasn’t even known in advance where to look 
best 

• Enormous effort to isolate LHC collision events with Higgs-like 
signature in many decay channels in parallel 

– Event selection process often helped with machine-learned criteria (e.g. boosted 
decision trees) [ Tools: TMVA, Neurobayes ] 

– Likelihood models built describing selected that maximize statistical power by 
taking into account properties of selected events, _and_ take into account known 
uncertainties on hundreds of aspects of detector and theory simulation 
[ Tools: RooFit, RooStats, Histfactory ] 

• Joint likelihood model across all channels combines information 
into single most powerful test 

– Convincing evidence obtained first on July 2012 dataset, when it was calculated 
that the odds of the observed signal arising as a statistical fluctuation (‘no Higgs 
hypothesis’) was less than 1 in ~3.500.000 (‘5 sigma’)  
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