Discovering the Higgs — finding the needle in the
haystack
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How do you find the nggS boson? Statistical analysis of all collisions

ATLAS 2011 - 2012
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Particle physics: & Forces
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What do we know about the Higgs boson?

Key ingredient of the Standard Model

Special role: origin of mass of elementary particles

— Space filled invisible with omni-present Higgs field.
Mass of elementary particles is consequence of interaction of particles with
this field

— Large particle mass - strong coupling to Higgs field
small particle mass - weak coupling to Higgs field

Peter Higgs:
field = particle

— Particle manifestation
of the Higgs field, with
same properties as field

— If you have access to
Higgs particles you can
directly measure coupling
strength to other particles

Leptons Wouter Verkerke, NIKHEF



Making a Higgs boson - theory

« Theory: if Higgs boson exists you can make it in high-energy
particle collisions

Higgs production according
to the Standard Model
(one of the possibilities)

Higgs-W boson
coupling

N

Higgs-top quark
coupling




Other types of Higgs decays

« So far showed one decay (H - WW), but many other types of
decays can happen.

— Relative rate of ocurrence (and most promising channel) depend on mass
of Higgs boson (which was a priori unknown, but we now know is 125 GeV)
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What does a Higgs boson look like, and how often?

Experimental feasibility rank
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A more accurate picture of what happens

‘Flying garbage’

Proton-Proton collision at the LHC



A typical proton-proton collision
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Find the Higgs — need something stands out, e.g. 4 leptons

EXPERIMENT
http://atlas.ch

18! —7 QATLAS

Run: 204769
Event: 71902630
Date: 2012-06-10
Time: 13:24:31 CEST

Wouter Verkerke, NIKHEF




Find the Higgs — need something stands out, e.g. 4 leptons

@ATLAS

EXPERIMENT
http://atlas.ch

But collision with a produced and decayed
Higgs boson are extremely rare:

In 2011+2012 dataset you have
~2.500.000.000.000.000.000 collisions
~500.000 with Higgs boson [ 1 : 5.000.000.000 ]
~500 with recognizable Higgs boson [ 1 : 5.000.000.000.000 ]

Run: 204769
Event: 71902630
Date: 2012-06-10
Time: 13:24:31 CEST

Wouter Verkerke, NIKHEF



Online selection and trigger

 You have already seen in previous lectures that a large part of
the pre-selection of collision events is performed in real-time
(‘the trigger’)

— Reduces 40 MHz LHC collision rate to ~600Hz of selected events
— Still leaves you with a few billion events written to disk/tape

« Goal: find the O(100) collision with a Higgs decay in a collection
of a few billion events

* Open gquestions
— How do you know what events with Higgs collisions look like?

— Can you ever be sure that any given selected collision really contained a
Higgs decay (since you can only see its decay products)?

— How do you formulate evidence of the existence of a Higgs particle, if you
can never really prove what happened ‘inside’ a collision?

Wouter Verkerke, NIKHEF



How do you know what events with a Higgs looks like?

Simulation of ‘soft physics’ Simulation of ATLAS LC data
physics process . . detector

Simulation of high-energy
physics process

Simulated _Q-
g 7 LHC event
" q with _
L HS 71 Reconstruction
! ..
W decay £2 of ATLAS detector

Observed LHC event g
with llll (4 leptons)

Butis it H>ZZ->1lll
or [somethinge else] > 1?2




Quantum mechanics — you are never sure what
happened”.
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Quantum mechanics — you are never sure what
happened”.
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But properties of leptons will still tell you something...

« Higgs: 4 leptons originate
from decay of a single particle

« Background — leptons originate
from decay of unrelated particles

* The 4-lepton invariant mass
will tell... . - N
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Statistical formulation of evidence

When a single observation can — for fundamental quantum-

mechanical reasons — not be conclusive, but can still make a
probabilistic statement (‘statistics’)

« Start of with a simple analogy using dice
We have a dice. Q: is it a regular dice, or a fake one?

Regular dice Fake dice

* Quantum aspect: we can’t see the dice, we can only ask
someone to roll it for us (repeatedly) and report the outcome

Wouter Verkerke, NIKHEF



Statistical formulation of evidence

« How can we ‘discover’ that the dice is fake?

« Start with formulation of two competing theories
— Hypothesis 1 — Regular dice ‘no Higgs’
— Hypothesis 2 — Fake dice (always 6) ‘Higgs’

« Perform an experiment — result: score ‘6’

 What can we say about nature of dice?
— Prob(score 6|fake)=100%-> Thus dice is fake?
— But prob(score 6 |[normal) = 1:6 -

Probability of ‘accidental’ score 6 with regular dice fairly large

 No clear conclusion = need more data

Wouter Verkerke, NIKHEF



Statistical formulation of evidence

Repeat experiment twice — result: 3 x score ‘6’

— Prob(3x score 6|fake) = 100%
— Kans(3x score 6|normal) = 1:(6x6x6) = 1:216

)}

)}

Becoming more convinced that dice might be fake, but not

absolutely sure.

Q: How sure do you want to be?

A: Depend on prior credibility of theory you're testing.

as theory is a priori very incredible

might be lower

Repeat experiment again twice — result: 5 x score ‘6’

— Prob(5x score 6|fake) = 100%
— Kans(bx score 6|normal) = 1:(6x6x6x6x6) = 1:7776

)}

If you're aiming to discovery existence of Martians, bar is very high
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Statistical formulation of evidence

« Usual standard in particle physics is known as ‘5 sigma’

— Defined as probability of a unit Gaussian distribution to deviate by >5,
which has a probility of 2.8x107

— In other words: probability that your ‘background-only’ hypothesis results in
observed signal must be less than ~1:3.5 million

« Using the ‘5 sigma’ standard you would accept only 9
consecutive dice rolls with score 6 as evidence for a fake dice
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 Nomenclature — The probability obtain your result under the
‘null’ (background hypothesis) is called the p-value’

Wouter Verkerke, NIKHEF



Statistical formulation of evidence

» Usual standard in particle physics is known as ‘5 sigma’

Gaussian sigmas ‘Z-score’ are simply another way to conventiently express
small probabilities

— Relates probabilities to the ‘normal (Gaussian) distribution’

For example a ‘3 sigma’ excess is an excess where the p-value is 0.001
(since only 0.001 of the Gaussian curve is beyond 3 sigma)

"Bell Curve"

Standard Normal
Distribution
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From dice to LHC collisions

« Dice provide easy example for calculating odds, but how do
these calculations apply to LHC collisions

» Each dice has six possible outcomes: score 1 ... score 6

 What are the possibly outcomes of LHC collisions? Number of
possibilities is almost infinite... How do we deal with this?

Need
(automated)
event classification...

Wouter Verkerke, NIKHEF




Event classification

* For simple Higgs decay signatures can do event classification
‘by hand’ (using our physics knowledge)

— Classify events 2 types: ‘signal-like’ (selected) and ‘background-like’
(discarded)

* For example: decay H>ZZ-1lll can be selected by requiring
events to have four lepton tracks what appear to originate from Z
decays.

— Signal-like events: all events with 4 leptons with certain criteria
— Background-like events: all other events

* Reduces properties of each LHC collision event to a single
Boolean

« But we analyze all LHC collision events:
output of full analysis is count of selected signal-like events
- Output of full analysis is characterized by a integer number

« Compare observed number of selected events with expectation of
selected event count for Higgs hypothesis and no-Higgs
hypothes|s Wouter Verkerke, NIKHEF



Statistical evidence from dice counting

 llustration of event counting with dice. First consider rolling a single
dice.

1 2 3 4 5 6 1 2 3 4 5 6
- Score - Score

* Now rolls dice 4 times (=1 expt), count number of sixes in each expt

<Nsix>=4/6 <Nsix>=4
‘Binomial distribution’ ‘Binomial
distribution’

1.

01 2 3 4 5
- Count of score 6

1 2 3 4 5 6
- Count of score 6




Statistical evidence from dice counting

Suppose we observe Nsix=4
Can now trivially obtain probabilities from score distributions:

P(Nsix=4|regular) = 0.00077 P(Nsix=4|fake)=1

* Now rolls dice 4 times (=1 expt), count number of sixes in each expt

SIx>=4/6 <Nsix>=4
‘Binomigl distribution’ ‘Binoxnial
distribttion’

1.

01 2 3 4 5
- Count of score 6

1 2 3 4 5 6
- Count of score 6




From dice counting to LHC event counting

« Each experiments rolls dice 4 times, count number of number of

<Nsix>=4/6 <Nsix>=4
‘Binomial distribution’ ‘Binomial
distribution’

1.

01 2 3 4 5
- Count of score 6

1 2 3 4 5 6
- Count of score 6

EaCh expt pnllar\fc D) \inarc nf | I_IC data count # Of -[-',-“ ir_lantAan
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PREDICTION 1: - Poisson PREDICTION 2 =" ‘Poisson
Number of  °% distribution’

LITI-IUCr:nber Otf distribution’ HO svents
events 0015
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for theory with fOIEI_theOFg with
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Calculating the expected outcome of an experiment

Simulation of ‘soft physics’ Simulation of ATLAS LHC data
physics process . . detector

-
o
e

Simulation of high-energy
physics process

g q
W q
L Reconstruction
! of ATLAS detector
W
g v

<Nsel>=3 if Higgs doesn’t exist
<Nsel>=7 if Higgs does exist

pu

Observed <Nsel>=11

Analysis Event selection

Wouter Verkerke, NIKHE.



Event counting for Higgs — example with ATLAS H->ZZ-> Il

—signal

Now apply calculation of
probabilities of event counting
to a realistic example:

ATLAS H->ZZ->lll sample

Count events in yellow band
N(observed) = 13

Expectation — no Higgs
Poisson distribution with <N>=4.5

> prob(N=13) = 0.08%

Expectation — SM Higgs
Poisson distribution with <N>=10

=2>prob(N=13) = 21%
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Doing better than counting — multivariate analysis & machine learning

 Example of H>ZZ->Ill was chosen because it lends itself well to
a simple counting analysis, because signal is quite clean and
selection criteria are relatively simple, but doesn’t give enough
statistical evidence to claim a discovery.

e How can we do better?

1. Design ‘better’ event selection (using more information that
‘simple count’ of leptons)

2. Exploit more information in statistical analysis of selected

L I L —
® [ e Daa ATLAS
events 825:— B Background zz" Hooz20a ]
. . . £ | [ Background Z+jets, t
3. Look for Higgs in additional S, of [ Sional (m, 125 Gev) i
T

channels that are more challenging iy | :
:_\S=7TeV:ILdt=4.8 o' } .

—
)]

(s =8 TeV:|Ldt = 5.8 fb"
10

100 150 200 250
Wouter Verkerke, NIKMgEGeV]



Machine learning example — Boosted decision trees

» Instead of a phycisist using his time and knowledge to design a clever
event selection = Feed information about properties of signal and
background algorithm to a ‘machine learning’ algorithm that can design
the ‘best’ selection for you

— Can (in principle) give better results, as much more information
can be considered and can be used

— But careful supervision and validation is needed — machine learning treats all
provided properties of signal and background events as ‘exact’, whereas in reality
simulation of certain event properties may be quite uncertain

» Popular technique at LHC is technique of ‘boosted decision trees’

« Decision tree = flow chart of binary selection cuts
— Conceptualy similar to ‘manual’ 4-lepton selection illustrated for H->ZZ selection

— But now let learner automatically decide on what observable event property~
best discriminates between signal and background

Wouter Verkerke, NIKHEF



Event properties that can be used in machine learning

* Momentum (p+) and direction of
- Electrons, Muons, Taus in event ,
- Jets in event
- Flavor-tagged jets in event
- Photons in event/
- Missing energyﬁ\ event

* Open angles between objects

* Invariant masses of objects
(uses\opening angles and momenta)

o
~ Properties of hemlsphe Etc...

Woute erkerke, NIKHEF



Building a tree — splitting the data

« Essential operation :
splitting the data in 2 groups using a single cut, e.g. H;<242

« Goal: find ‘best cut’ as quantified through best separation of
signal and background (requires some metric to quantify this)

* Procedure:
1) Find cut value with best separation for each observable
2) Apply only cut on observable that results in best separation



Building a tree — recursive splitting

» Repeat splitting procedure on sub-samples of previous split
; ; &

« Output of decision tree:

— ‘signal’ or ‘background’ (0/1) or

— probability based on expected purity of leaf (s/s+b)



Machine learning with Decision Trees

* Goal: Minimize ‘Impurity Function’ of leaves

— Impurity function i(t) quantifies (im)purity of a sample, but is not uniquely
defined

— Simplest option: i(t) = misclassification rate

25

Split criterion

== Misclas. error
= Entropy

«Impurity function

= Gini

L1 L L L L
0 0.2 04 ne ng 1

Signal purity

* For a proposed plstso a node t, decrease o)flmpurlty IS

Ai(s,t t)—pr-i(tL)—pr-i(
sImpurity sImpurity sImpurity
of sample of ‘left’ of ‘right’
before split sample sample

« Take split that results in largest Ai



Machine learning with Decision Trees

« Stop splitting when
— not enough improvement (introduce a cutoff Ai)

— not enough statistics in sample, or node is pure (signal or background)

« Example decision tree from learning process

Wouter Verkerke, NIKHEF



Machine learning with Decision Trees

« Given that training happens on finite samples of simulated signal
and background events, splitting decisions are based on ‘empirical
impurity’ rather than true ‘impurity’ - risk of overtraining exists

ooy » ‘ﬁ

« Can mitigate effects of overtraining by ‘pruning’ tree a posteriori

— Expected error pruning (prune weak splits that are consistent with original leaf
within statistical error of training sample)

— Cost/Complexity pruning (generally strategy to trade tree complexity against
performance)

Wouter Verkerke, NIKHEF
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Concrete example of a trained Decision Tree

eBackground

N=420.000000
S/(S+B)=0.055

y<1.18

N=343.000000

S/(S+B)=0.009

N=44.000000

S/(S+B}=0.000

N=1000.000000
S/(S+B)=0.500
y< 0.85

N=580.000000
S/(S+B)=0.822
x< 1.06
N=77.000000
N=92.000000 N=488.000000
S/(S+B)=0.260

SH(S+B)=0.043 S/(S+B)=0.969

x<0.649

N=33.000000

S/(S+B)=0.606

IR RRNURRRU | =



Boosted Decision trees

« Decision trees largely used with ‘boosting strategy’

« Boosting = strategy to combine multiple weaker classifiers into a
single strong classifier

» First provable boosting algorithm by Schapire (1990)
— Train classifier T1 on N events

— Train T2 on new N-sample,
half of which misclassified by T1

— Build T3 on events where T1 and T2 disagree
— Boosted classifier: MajorityVote(T1,T2,T3)

 Most used: AdaBoost = Adaptive Boosting (Freund & Shapire
‘90)

— Learning procedure adjusts to training data to classify it better

— Many variations on the same theme for actual implementation

Wouter Verkerke, NIKHEF



AdaBoost

« Schematic view of iterative algorithm
—Jp — Train Decision Tree on (weighted) signal and background training samples
— Calculate misclassification rate for Tree K (initial tree has k=1)
N PERVEETR W SR B - «“Weighted average
2i=1 Wi X isMisclassified,(i) of isMisclassified over

€ —
Z?’:l W’.k all training events”

— Calculate weight of tree K in ‘forest decision’ ax = 3 X In((1 — €x)/ex)

— Increase weight of misclassified events in Sample(k) to create Sample(k+1)

—— k k+1 _  k
i — W — i

X ek
« Boosted classifier is result is performance-weighted ‘forest’

Nt-ree

o : *“Weighted average
T(i) = Z axTk(i) ot Trees by their performance”
k=1

Wouter Verkerke, NIKHEF



AdaBoost by example

_ 1-0.4
o = In oA = 0.4

— Misclassified events get their weight multiplied by exp(0.4)=1.5

— Next tree will have to work a bit harder on these events

1-0.05 2.0

» Good classifier (Error rate =5%) o = In 55> =

— Misclassified events get their weight multiplied by exp(2.9)=19 (!

— Being failed by a good classifier means a big penalty: must be a difficult
case

— Next tree will have to pay much more attention to this event and try to get it
right

* Note that boosting usually results in (strong) overtraining

— Since with misclassification rate will ultimately go to zero

Wouter Verkerke, NIKHEF
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Example of Boosting

B(X,y) =Y aTi(x,y)

H=613.983000
S5 +Bj=0.435

ol

z>0.875

N=1000,000000
S/(S+B)=0.539

1=0

N=386.017000
SIS+B=0.718
%0792

4
y

0.5

o

N=420.000000
S/(S+B)=0.055

y<1.18

N=1000.000000
S/(S+B)=0.500
y< 0.85

N=580.000000
S/(S+B)=0.822
x<1.06
N=77.000000
S/(5+8)=0.260

s/(s+B)=0.043
x<0.649

] Sigha (st bty ||
Background (test sample)

Ki -Smil 1est: signal g

IREE RN RN R

SprTTT
@
o
@
)
IS
)
o
)

N=1000.000000
SI(S+B)=0.488

N=90.912600

SHS+B)=0.044

TS PRI NN N

.2 0.4 ] 0.6
BDT response

N=488.000000

S/(S+B)=0.969

*“Ti(x.y)

N=1000.000000
SI(S+B)=0.355
y<0.604

N=408.142000
SH(S+B=0.701
%<0.819

N=1000.000000
S/(S+B)=0.376
y<0.113

N=751.979000
SHS+B)=0.258
2<0.527

*Ta(x.y)

Wouter Verkerke, NIKHEF



e\What is TMVA

E ROOT: is the analysis framework used by most (HEP)-physicists

B Idea: rather than just implementing new MVA techniques and
making them available in ROOT (i.e., like TMultiLayerPercetron
does):

» Have one common platform / interface for all MVA classifiers
Have common data pre-processing capabilities

.
®» Train and test all classifiers on same data sample and evaluate consistently
®» Provide common analysis (ROOT scripts) and application framework

.

Provide access with and without ROOT, through macros, C++ executables

' »

=

TMVA

op Workshop, LPSC,
A. Hoecker: Multivariate Analysis with TMVA




o/ MVA Content

®» Currently implemented classifiers

Rectangular cut optimisation

Projective and multidimensional likelihood estimator
k-Nearest Neighbor algorithm

Fisher and H-Matrix discriminants

Function discriminant

¥y ¥ ¥ ¥ ¥ ¥

Artificial neural networks (3 multilayer perceptron impls)

v

Boosted/bagged decision trees
» RuleFit
» Support Vector Machine

» Currently implemented data preprocessing stages:

» Decorrelation
» Principal Value Decomposition
» Transformation to uniform and Gaussian distributions

Top Workshop, LPSC, Oct 18-20, 2007
A. Hoecker: Multivariate Analysis with TMVA



oA Toy Example (idealized)

B Use data set with
variables:

4 linearly correlated Gaussian distributed

[ TMVA Input Variable: vari+var2 |

B g T TR
@ i ;
= : e
0.25 5
g : 13
2 o M
b 1&
0.15f 1s
3 is
oAf 1&
E 18
0.05f :;_
: o
0 2

5 4 2 0 2 4 6
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T oasf
o :
= 04f 2
g 0.35; §
Z o3} e
E 2
0.25f &
E o
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E =
015 i
0.1 %
0.0 3
o“ =]

[_ TMVA Input Variable: vari-var2 | | Correlation Matrix (signal) |
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= [Z77] Background 2
E 04F 13 var4
s | g
0.3f :
0.25 g vard
0.15 <
E? vari-var2 -20
0853 2 4 0 1 2 3 -40
vari-var2 -60
| TMVA Input Variable: var4 | varisvar2 -80
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5 03f E e L P PP LR LR R EE N ___
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0.2f g  TTTTTTTTTTTTTTTTTTTTToTom oo e
- S o 1: vard : 0.606
o % e 2:varl+var2:0.182
0.05f s
o S . 3 :var3 : 0.173
o 4 : varl-var2 :0.014

Top Workshop, LPSC, Oct 18-20, 2007
A. Hoecker: Multivariate Analysis with TMVA



ePreprocessing the Input Variables

B Decorrelation of variables before training is useful for this

example

Normalised [

Normalised 3

08 TS
Background
1]

04F

/03,

03

0.0)%

(S.B): (0.0,

U/O-flow

IIIIIIIIII

Normalised [
oD
-
Normalised
b}

)%

w (5,B): {0.0,

s daaa i laaales
U/O-flow (S,B): (0.0, 0.0

-

0
-42 B5 -2 08 00 0.51 1 21.5 32 4 852 6o 008 2 13 4.5
vard vard

Note that in cases with non-Gaussian distributions and/or nonlinear
correlations decorrelation may do more harm than any good

Top Workshop, LPSC, Oct 18-20, 2007
A. Hoecker: Multivariate Analysis with TMVA



Evaluating the Classifier Training (II)

B Check for overtraining: classifier output for test and training
samples ...

TMVA overtraining check for classifier: BDT
3 T, T 1 1 T 1 1 LI L L T T .1 LI T 1
E Slghal (test éample) ! e S|gnalI (traunmgJ sample)I ]
T Background (test sample) - Background (trainjng sample)
g 2.5 | Kolmogorov-Smirnov test: signal (background) probability = 2.6 -FH- B (3.92e-13) _
p4 _ ]
2~ .
- 15
- - O
15— —g
_ 1
- 49
- =
= 1<
N 1@
05— —¢
n 13
0 4 =)
-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6
BDT response

Top Workshop, LPSC, Oct 18-20, 2007
A. Hoecker: Multivariate Analysis with TMVA



Evaluating the Classifier Training (V)

B Optimal cut for each classifiers ...

Determine the optimal cut (working
point) on a classifier output

| Cut efficiencies and optimal cut value |

0.8

Signal efficiency ——— Signal purity
T it Signal efficiency*purity

Background efficiency o

= H H

5 1 Li : 1 -

= :

>

Q 0.8 =i,

c

i

o

Cut efficiencies and optimal

cut value

Signal efficiency

— —— Signal purity

\ Signifi... [J@FI

Signal events

| 1000 i’

Background events

| 1000 i’
ansel Qrawl

0.8

Efficiency (Purity)

0.6

0.4

0.2 —----For 1000 S|gnal and 1000{)3 K
" events the maximum S /\S+B is:
| 28.9327 when cuiting at 0.4392 :

Background efficiency | 2i?:'%ﬁciency*purity
............................................................ —f -
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05 06 07 08 09
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Significance

Top Workshop, LPSC, Oct 18-20, 2007
A. Hoecker: Multivariate Analysis with TMVA
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eReceiver Operating Characteristics (ROC) Curve

B Smooth background rejection versus signal
EfﬂCiency CUrVe. (from cut on classifier output)

Background rejection versus Signal efficiency
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eExample: Circular Correlation

 TIllustrate the behavior of linear and nonlinear classifiers

eCircular correlations
e(same for signal and background)

Tl T T - signal | Background rejection versus Signal efficiency TMVA
120 +_Background | 1
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vari

eThe “"Schachbrett” Toy

Cloewv v b b b Py by g 0 19

Fl
-3 -2 -1 0 1 2 3
var0

Signal and background distributions weighted by SYM_Gauss output |

var2

3 | LI | LI | T 1T | LB | T 1T | LI |
e 0
= » &

.

-1

2

=
IIII|IIII|IIII|IIII|IIII|IIII

-2 -1 1] 1 2 3

&

Perfor

mance achieved without parameter tuning:

PDERS and BDT best “"out of the box” classifiers

After specific tuning, also SVM und MLP perform

well

° Theoretical maxir

Background rejection versus Signal efficiency
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Events / 0.17

Example of BDT use in Higgs

* Distribution of BDT score in search for for H=> 11 events

Ut .4+ et VBF

10* j L dt=20.3fb"

10°

10°

10

107

1 -0.5 0

< Bkg-like events

\s=8TeV Z— 1t CR

ATLAS Preliminary

—— Data
—— 50 x H(125)— 11
Bz 1t
B Others
I Fake t
77 Uncert.
' I

0.5 1
BDT score

Signal-like events -

Signal expectation x 50

Simplest analysis strategy

IS to select events based on BDT
score (e.g. BDT>0.7) and then
perform a counting analysis,

but clearly throwing away
some information (and signal events)

Wouter Verkerke, NIKHEF



Outline of analysis procedure so far

MC Simulated

Events (sig,bkg) “real data”

‘ All available ‘

Helps
to define
selection

‘Hand-designed selection’
‘Machine-learned selection’
(with careful supervision)

Selection (MC)

Final Event Final Event
Selection (data)

Event counting (so far)

Wouter Verkerke, NIKHEF



Beyond event counting — exploiting all information

« Both H>711 and H->ZZ searches illustrated that more
discriminating information is available in each event that is used

in the selection

T | T T T T | T T T T
ATLAS
H—zZ" 4l

" e Data
— [l Background zz"

E I Background Z+jets,
i \:' Signal (m =125 GeV)
" 7/ Syst.Unc.

“\s =7 TeV:JLdt = 4.8 fo” h

Events/5 GeV
N
(8]}

N
o

-
8]

“\s =8 TeV:|Ldt = 5.8 b

100 150 200 250
m, [GeV]

Events in center of window have higher
probability to be signal than at edge
—> ignored in counting analysis

E T T T T ‘ T T T T ‘ T T T T [ T T T T | T T 9
= F ut, + et VBF ATLAS Preliminary ]
S - i
< 10*/Ldt=2031" ~¢- Data -
2 F — 50 x H(125 E
c " \s=8TeV Z- wtCR x H(125)> v 3
g al | X 8
w 10°g Bl Others E

- [ Fake t ]

ol 777 Uncert. ]
10 |
10 E
1 E
10"

-1 -0.5 0 0.5 1
BDT score

Hypothetical cut on BDT score
(e.g. BDT>0.7) throws away some signal
events

=» Can we use all of this information to increase o.SeRSEIVILY?



Beyond counting analysis — building likelihood models

Can we include all such extra information in the statistical
Inference (i.e. calculation of the p-value)

Example of probabilistic interpretation of results with dice and
event counting were ‘light’ on mathematical detail.

If we work out the math we see that include additional
Information is mathematically straightforward (although formulas
for practical cases can become very complex)

Probability distribution for

counting experiment
Observed event count

\ A
- P(N}/)_ NI

Expected
%72 4 6 8 10 12 14 16 18 50 (average) COUnt

(=8
803

0.005

Wouter Verkerke, NIKHEF



Beyond counting analysis — building likelihood models

Events / 0.17

How do we build a probability model for a histogram?

Note that every bin is in effect a counting experiment

E T T T ‘ T T T ‘ LI I [ LI I | T
C Ut 4+ ety VBF ATLAS Preliminary

104L [ Ldt=203 1" ~¢- Data

2 — 50x H(125
- \s=8TeV Z— t:CR X H(125)-

M Zzo

10° E Bl Others
C I Fake t
102 I 77 Uncert.

10

[ Ne!

PIVI1)="3

= Poisson(N' | m»s' +b, +b, +b.)

-1 -05 0 0.5 1
BDT score

Expected event rate is sum of expected
signal and background rates

Wouter Verkerke, NIKHEF



Beyond counting analysis — building likelihood models

Events / 0.17

How do we build a probability model for a histogram?

Note that every bin is in effect a counting experiment

10*

10

10°¢

10%¢

Cout, + et VBF
_ [ Ldt=203 1o
" \s=8TeV Z— ttCR

— 50 x H(

Mzt
B Others E
I Fake t ]
77 Uncert.

0.5

[ T T T T

ATLAS Preliminary.-
—e— Data -
129)— 17 7

m

PV ="

= Poisson(N' | m»s' +b, +b, +b.)

1
BDT score

—_—

Expected event rate is sum of expected
signal and background rates

Wouter Verkerke, NIKHEF



Beyond counting analysis — building likelihood models

Events / 0.17

How do we build a probability model for a histogram?

Note that every bin is in effect a counting experiment

P(N | )I) = Poisson(N, | A,)- Poisson(N, | A,)....Poisson(N | A )

T [ T T | LI [ LI | T

ut, + et VBF ATLAS Preliminary - p N’ | l; l; _
104L [ Ldt=20.3 1" —&— Data . ( W, 0, 29"-)
—— 50 x H(125)— 1t 1 . : . . .
\s=8TeV Z— 1t CR s ] nPOlsson(Nllu'Sl+bll+bl +)
10° B Others = .

[ Fake t
77 Unceyf.

~

107

10

-1 -05 0 0.5 1
BDT score

Note: the function P(N|u) is called the Likelihood function

Wouter Verkerke, NIKHEF



Beyond counting analysis — building likelihood models

Events / 0.17

How do we build a probability model for a histogram?

Note that every bin is in effect a counting experimen

t .-
P(N I A) = Poisson(N, | A,): Poisson(N, | A,)....Poisson(N | A )

E T T T T ‘ T T T T 1 T T T T ‘ T T T T | T T = . . .

F Wl + €Tnag VBF ATLAS Preliminary P(N | ‘u, bl , b2 ... ) —
104L [ Ldt=20.3 1" ~¢— Data

E = _ —— 50 x H(125)— 1t ]

S\s=8TeV ZowmCR U T +...)
10° 3 B Others
10° . . . :

Note that signal rate in function was cleverly written as a global scale
10 parameter u times the nominal prediction for each bin
1 This allows us to use the same likelihood function to describe

10 * the Standard Higgs model

(nominal signal + background - choose y=1)
* The no-Higgs model
(background only = choose u=0)

* non-standard Higgs models
(choose u<1 or u>1 to have less or more Higgs produced)

Note: the function




Event counting for Higgs — example with ATLAS H->ZZ-> Il

—signal

Now apply calculation of
probabilities of event counting
to a realistic example:

ATLAS H->ZZ->lll sample

Count events in yellow band
N(observed) = 13

Expectation — no Higgs
Poisson distribution with <N>=4.5

> prob(N=13) = 0.08%

Expectation — SM Higgs
Poisson distribution with <N>=10

=2>prob(N=13) = 21%

i Io IDa'taI
— [l Background zz"

E I Background Z+jets,
C D Signal (mH=125 GeV)
" %/ Syst.Unc.

“is =7 TeV:|Ldt = 4.8 b

N
[9)]

Events/5 GeV
N
(=]

—
(9]}

“is =8 TeV:|Ldt=5.8 b
10~

HozZ" =4l

T I T T T T
ATLAS

100 150 200 250
m,, [GeV]
El _
.ﬂl C
Q018
5 L
S0.16—
9 —
2 r
So.14
o C
0.12—
0.1
0.08—
0.06[—
0.04F
0.021
0_ I Lo I P NI
0 5 10 15 20 25 30

Wouter Verkerke, NIKHEF
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Calculating the p-value for distributions

* For distributions replace N(observed)

by a Likelihood ratio

L(Nu=0)
L(N | u=f)

A’O (Nobs) =

Numeric example:
logA,(observed) = 6.8

Expectation — no Higgs

Asymptotically a 2log(x?) distribution
prob(g>...) = p,,(276.8,1)=0.02% (‘3.5 0’)

Expectation — SM Higgs

Asymptotically a non-central
Chi-squared distribution

Evints/5 GeV
ns n
(=] (9]

(6]

10~

[ T I T T T T I T T T T I T T T T
[ e Data ATLAS
— [l Background zz"

E B Background Z+jets,
C D Signal (m, =125 GeV)

L %% Syst.Unc.
“is=7TeV:|Ldt = 4.8 b
s =8TeV:|Ldt=5.8fb"

Hozz" a4l

100 150 200 250
m,, [GeV]

Number of toys
<

— (@ _lu=0)
— 1(@_lu=1)

Observed value

vwh“.‘ﬂnh.l.ﬂnﬂ

5 10 15 20

Wouter Verkerke, NIKHEF



Putting even more information in

« So far | showed Likelihood functions that correspond to
1-dimensional distributions

E T T T T ‘ T T T T ‘ T T T T ‘ T T T T I T T = T T T T T T T T T T T T T
':_" E UT .y + €Thq VBF ATLAS Preliminary ] E " e 'Data | A1lL AS ]
2 10k Ldt-20310" ~+- Data - w 25[ [l Background 2z Hoz2al
*2 F s_8Tev Z— woR 20X H(128)- w3 2 [ Background Z+jets, t 1
) . | s 1 © I []Signal (m =125 GeV) .
> 31 _ =20+ H _
m 107E Il Others E <YL % Syst.Unc ]
F I Fake © ] - T ]
- 777 Uncert, ] 15015 =7 TeV: [Ldt = 4.8 fb” ]
[is=8TeV:|Ldt=5.8fb" ]
10 10¢ ]
5) f
1 O_
0305 0 05 1 100 150 200 250
m, [GeV]
BDT score
i i
P(Nlu, D | |P01550n(N |- s+b +b, +...)

* But you can build much more complex models that look at many
distributions simultaneously. Difficult to visualize, but also not
needed, p-value (and discovery claim) only relies on you being
able to calculate ratio of two likelihoods functions

Wouter Verkerke, NIKHEF



Example combining information of H>ZZ and H>TT1

« If you have a Likelihood function for your H>ZZ analysis and a
Likelihood function of your H-> 1T analysis, you can combined
both channels in a ‘joint likelihood’ by simply multiplying them
(as we did for the bins within a channel)

E T T T T T T T [ T T T T I T T 3 T T T T T T T T T T T T

t_ F UT, 4+ €T, VBF ATLAS Preliminary ] ?DJ L e |Data I A"lLAS ]
2 10*L[Ldt=2031" —¢— Data a w0 25 [l Background 72" HoszZ0sal
42 F ls_8TeV 7o wtCR 20X H(125)— 1t 3 2 T [ Background Z+jets, i ]
o o[ Mz-u ] ©_ © []Signal (m =125 GeV) .
m 107 Il Others 3 D20 W SystUnc -
E I Fake t ] L T ]
102k 7777 Uncert, ] {5018 =7 TeV:[Ldt = 4.8 fi 7
[\s=8TeV:/Ldt=5.8 b ]
10 10 ]

h

107 oE

-1 -0.5 0 0.5 1 100 150 200 250

m, [GeV]
BDT score 4

L(N,,,N_lu,.)=L(N, lu,.) LIN_u,..)

Wouter Verkerke, NIKHEF
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Higgs discovery strategy — add everything together

H>ZZ->1lI

T
w [ e Daa
<

Signal (m,
S0 5'

"
.

100

Assume SM rates

2 -
i~

Higgs BR + Total Uncert

g

=)
@

)
180 200
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I
140
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0 25— [l Background 22"
£ | Ml sackgrou nuz;e i

ZEEM L M } |

250
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T
ATLAS
Hozz ' al
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H>T1T

H>WW->puvijj

= T T T

® I i ATLAS
O] Tev —+— Data

2 e Total kg (st 5 sy
- 0j, H= WW— evijj Wepls

I I ot

r Dibosons

o Multi-jot
4w Top
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Collinear mass m,, [GeV]

Joint likelihood model for all observation channels

|:> L(m&) = LH—)WW(”%/W’ 5) ; LH—)Q(%’ C;) ; LH—)ZZ (@21 C_i) ]



Further complexity - dealing with systematic

Linecartaintioce

UT TGO LCATT T

« So far all action was geared to improve sensitivity of analysis
— Use Machine Learning to optimize event selection using many observables

— Use complex Likelihood models to exploit additional information inside
selected events, and to combine multiple channels together

« But we have so far ignored an important scientific aspect
— Not all our knowledge about signal and background precise

— Yet, both ML event selection, and Likelihood models so far treat information
provided as ‘the exact truth’

« Main scientific challenge — incorporate effect of ‘systematic
uncertainties’ into the analysis (and probability calculations)

Wouter Verkerke, NIKHEF



Understanding signal and background

Simulation of ‘soft physics’ Simulation of ATLAS

LHC data
physics progess. detector :

Simulation of high-energy
physics process
g q
W q
A Reconstruction
! of ATLAS detector
W S [ ebaa ' aAmaAs
g v 8_25 [ Background 22" Hos 72"l
*E B Background Z+ets, tf
g 20 D Signal (mH=1 25 GeV)
L

%% Syst.Unc.
15018 =7 TeV:JLdt = 4.8 fb

1s=8TeV:[Ldt=5.8fb"

Analysis Event selection

100 150 200

m,, [Ge\zliso Wouter Verkerke, NIKHE.



The simulation workflow and origin of uncertainties

phyS|cs proc ss

Simulation of ‘soft phys & Simulation of ATLAS
é detector

LHC data

Simulation of high-energy
physics process

S [T T T T T
8 - ¢ Data ATLAS
- [ Background 22" .
0 25¢ I ackgroun  HozZ"sal
£ j-Background Z+jets, tt
g 20—_ |:| Signal (mH=125 GeV)
w

[ %/ SystUnc.
1508 =7 TeV:[Ldt = 4.8 b
[\s=8TeV:|Ldt=581b"

100 150 200

Analysis Event selection

Reconstruction
of ATLAS detector

250
m,, [GeV]

*WouterWas kerkeek ENINKHE,



Typical systematic uncertainties in HEP

« Detector-simulation related
— “The Jet Energy scale uncertainty is 5%”

— “The b-tagging efficiency uncertainty is 20% for jets with p;<40”

* Physics/Theory related
— The top cross-section uncertainty is 8%

— “Vary the factorization scale by a factor 0.5 and 2.0 and consider the
difference the systematic uncertainty”

— “Evaluate the effect of using Herwig and Pythia and consider the difference
the systematic uncertainty”

« MC simulation statistical uncertainty

— Effect of (bin-by-bin) statistical uncertainties in MC samples

Wouter Verkerke, NIKHEF



How do we take uncertainties into account

* In (Machine Learned) event selections
— Essentially very difficult.

— Main strategy — only use ‘safe’ observables in selection process (those with
little uncertainty on them), and make selection not to tight (so that a small
shift in e.g. a calibration does not change the fraction of selected signal by
much)

* In Likelihood-based calculation of p-values
— In principle straightforward!

— Likelihood models can have parameters that can be weakly that represent

the known systematic uncertainties on various quantities
Likelihood model for counting experiment with exactly known background

L(m = Poisson(Ng, | mxs +b)
- -

Likelihood model for counting experiment with 8% uncertainty on background

L(u,b)= Poisson(Ng lu-s+b)- Gauss(l; 15,0.08)

Wouter Verkerke, NIKHEF



We have many systematic uncertainties!

Leading-order framework approximation

Signal process factorization/normalization
scales

Background process scales

Quark/gluon content of the proton
Background process cross-sections

Higgs branching fractions

Multi-leg MC generator matching parameters
Massive/massless treatment of heavy flavors
Measured mass of'the Higgs boson

Choice of generator program

Parton showering model

ME/PS matching scales

Heavy flavor content of jets

Jet energy scale calibration
Jet resolution uncertainties
Jet reconstruction efficiency
Electron reconstruction efficiency
Muon reconstruction efficiency
Electron momentum scale
Muon momentum scale
Luminosity

b-jet flavor tagging efficiency
c-jet flavor tagging efficiency
tau reconstruction efficiency
Missing energy resolution
Reco fake estimates

Trigger efficiencies

Pileup effects and model uncertainty

Simulation transport uncertainties




We have many systematic uncertainties!

W

Theoretical unc

Mathematical form of Likelihood model will get very complex

Likelihood model for counting experiment with exactly known background

L(u)=Poisson(N, | u-s+b)

-

Likelihood model for counting experiment with 8% uncertainty on background

L(u,b) = Poisson(Ng, lu-s+b)- Gauss(b1b,0.08)

Hundreds of additional parameters modeling systematic uncertainties
(many systematic uncertainties require >1 parameter)...

\W_. Verkerkes6/9



RooFit — Focus: coding a probability density function

* Focus on one practical aspect of many data analysis in HEP:
How do you formulate your p.d.f. in ROOT

— For ‘simple’ problems (gauss, polynomial) this is easy

)
g

Events / ( 0.2
g

300

200

100

10 8 £ 4 -2 0 2 4 @& 8 10

— But if you want to do unbinned ML fits, use non-trivial functions, or work with
multidimensional functions you quickly find that you need some tools to help
you



RooFit — a toolkit to formulate probability models in C++

« Key concept: represent individual elements of a mathematical
model by separate C++ objects

Mathematical concept RooFit class
variable X, p RooRealvar
function f (X RooAbsReall
S = (X; P, CI) ROOAbsPdf
space point X ROOArgSet
Xmax
integral j f (X)d X RooRealIntegral

] Xmin . N/
list of space points Xk RooAbsData

Wouter Verkerke, NIKHEF



RooFit core design philosophy

« Build likelihood function out of many small software objects, rather
than a monolithical double L(double * params) function

it Gauss(X,u,0)

RooGaussian g

RooFit
diagram

RooRealVar x RooRealVar y RooRealVar =z

RooFit

code RooRealvar x(“x”,”x”,-10,10) ;
RooRealvar m(“m”,”y” O -10,10) ;
RooRealvar s(“s”,”z ” ,3,0.1,10) ;

RooGaussian g(“g”,”g” X,m, s) ;



RooFit core design philosophy

« Build likelihood function out of many small software objects,
rather than a monolithical double L(double * params)
function

it Gauss(X,u,0)

RooWorkspace (keeps all parts together)

RooGaussian g

RooFit
diagram

RooRealVar x RooRealVar m RooRealVar s

RooFit RooRealvar x(“x”,”x”,-10,10) ;

code RooRealvar m(“m”,”y”,0,-10,10) ;
RooRealvar s(“s”,”z ” ,3,0.1,10) ;
RooGaussian g(“g ”,”g” X,m, s) ;

Rooworkspace w(“w”) ;
w.import(g) ;



RooFit core design philosophy - Workspace

« Alternatively, a simple math-like ‘factory language’ can quickly
populates a workspace with the same objects

Vah Gauss(X,u,0)

RooWorkspace

RooGaussian g

RooFit
diagram

RooRealVar x RooRealVar m RooRealVar s

RooFit
code

RooWorkspace w(*w”) ;
w. factory(“Gaussian::g(x[-10,10],m[0],s[51)") ;



RooFit implements normalized probability models

* Normalized probability (density) models are the basis of all
fundamental statistical techniques

— Defining feature:

nnnnnnn
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[n]
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s Profction gfgausgian PDF
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Of (%, p)dx° 1,
f(x,p)20

[F(dx=1

jF(x, y)dxdy=1
« Normalization guarantee introduces extra complication
In calculation, but has important advantages

— Directly usable in fundamental statistical techniques

— Easier construction of complex models (will shows this in moment)

RooFit provides built-in support for normalization, taking away down-
side for users, leaving upside

— Default normalization strategy relies on numeric techniques, but user can specify
known (partial) analytical integrals in pdf classes.

Wouter Verkerke, NIKHEF



Abstract interfaces make fitting and toy generation easy

« Can make fits of models to data, and generate simulated data
from toys with one-line comments, regardless of model
complexity

Fitting Generating

data = model.generate(x,1000)

N\

RooAbsPdf N ﬁ,&'{%
model fitTo(data) i
I :
e - F
ﬁ#ﬁ{ %ﬁﬁ ’ .f %ﬂ
£ E— i -
7 " RooDataSet
# ™
o
RooAbsData

Wouter Verkerke, NIKHEF



The power of conditional probability modeling

« Take following model f(x,y):
what is the analytical form?

|

_—
“M i

iy ‘;‘(P’}‘Jl}ﬂ"'" '::;;fi::;;ff

0005 J. A
‘MHH':* .I'”ri .'H'h ‘M N

« Trivially constructed with
(conditional) probability
density functions!

Gauss f(x|a*y+b,1)

fﬁ:’:i:’fﬁ'ﬁ' llu
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Coding a conditional product model in RooFit

« Construct each ingredient with a single line of code

Gauss f(x,a*y+b,1)

e = RooRealvar x(“x”,”x”,-10,10) ;
mwww”‘¢%;j RooRealvar y(“y”,”y”,-10,10) ;
WJ%WWWW(?S' RooRealvar a(“a”,”a”,0) ;

. L‘F RooRealvar b(“b”,”b“,-1.5) ;
Gauss g(y,0,3) RooFormulavar m(“a*y+b”,a,y,b) ;

RooGaussian f(“f”,”f”,x,m,Cc(1))

V///’\\\\\ RooGaussian g(“g”,”g9”,y,C(0),c(3))
IR S RooProdpPdf F(“F”,”F”,g,Conditional (f,y))
F%XJ)ZKXWV9W¥Tf”””’

. I% ‘ Tr?ﬁ:‘?muéﬂkh?"“@f

o ! ; Note that code doesn’t care if input expression is
el 'l,‘ }W' H { variable or function!
P uwanW

Wouter Verkerke, NIKHEF



Advanced modeling building — template morphing

* At LHC shapes are often derived from histograms, instead of
relying on analytical shapes . Construct parametric from
histograms using ‘template morphing’ techniques

Parametric model: f(x|a)

obents 4 0523 x3.8 )

n

Input :
histograms o
from simulation

B R M m oM W W Mowm W e



Code example — template morphing

« Example of template morphing
systematic in a binned likelihood

]. 0 + 0 n

LS +a>(Si-Si) a>0
5@ ) =i 0 0 -\

f s, taxs, -s;) "a<0

Visualization of bin-by-bin linear interpolation of distribution

7 o RS dAI23x8@)
B A A R P
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// Construct template models from histograms
w. factory(“HistFunc::s_0(x[80,100],hs_0)") ;
w. factory(“HistFunc::s_p(x,hs_p)”) ;
w. factory(“HistFunc::s_m(x,hs_m)”) ;

// Construct morphing model

w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alphal[-5,5])") ;

// construct full model

w.factory(“PROD: :model (ASum(sig,bkg,f[0,1]),Gaussian(0,alpha,1))”) ;
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From simple to realistic models: composition techniques

« Realistic models with signal and bkg, and with control regions
built from basic shapes using addition, product, convolution,
simultaneous operator classes

5 g
5 2
agesl o5
5 g
4 &
£
002 - 0.04
Ldi)]-1 58 0.0
a0 on
0005 oot
Il 1 1 1 Il Il 1
u\ & 3 4 -2 0 2 [3 a 01
¥ i
_E B
ogst &
% H
£ Fos
o0 -
s
0018 004
.01 0.0
on
0.008-
Q.01
L 1 1 1 1
S — 5 4
—
%m %Eﬁ
3 i
E g
oBes[ &os
s £
5 2
g £oe
008 am
0 on
0.005| oot
Il 1 1 1 Il 1 1 1 1
°. & 3 4 -2 0 2 [3 E] 1 01 L 1 1
[ a 10




Graphical example of realistic complex models

- Gauss(x,u.0)

ROOGaussian g
RooFit

diagram

ROORealvar x RooRealvar m RooRealvar s

RooFit

code RooRealvar x(“x"”,"x",-10,10) ;

RooRealvar m(“m”,"y",0,-10,10) ;
RooRealvar s(“s”,"z",3,0.1,10) ;
RooGaussian 9("g”,"g",x.m.5) ;

variables

function objects

N KL &)
Expression graphs are \ DR _ SV
autogenerated using IV N ek

pdf->graphvizTree(“file.dot”)
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Abstracting model building from model use - 2

* Must be able to practically separate model building code from

statistical analysis code.

« Solution: you can persist RooFit models of arbitrary complexity in

‘workspace’ containers

» The workspace concept has revolutionized the way people share

and combine analyses'
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RooWorkspace

Realizes complete and practical

factorization of process of

building and using likelihood functions!

Rooworkspace w(“w”) ;
w.import(sum) ;
w.writeToFile(“model.root”)
model.root
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Using a workspace file given to you...

~ // Resurrect model and data
TFile f(“model.root”) ;
Rooworkspace* w = f.Get(“w”) ;
RooAbsPdf* model = w->pdf(*“sum”)
RooAbsData* data = w->data(“xxx”)

¥

// Use model and data

RooWorkspace ) mode1->fitTo(*data)

[ Roodddpar

RooPlot* frame =
w->var(“dt”)->frame() ;

data->ploton(frame) ;

model->ploton(frame)
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The Higgs discovery workflow

Detector
H2vy H>ZZ H->WW and Theory
knowledge
Team of specialists Team of specialists Team of specialists
design event selection, design event selection, design event selection, Team of
statistical analysis of statistical analysis of statistical analysis of specialists

selected events selected events selected events on detector
simulation
@ performance
and theory

uncertainties
(1) Loa(h) L)

N 1 w

Team of specialists

to combined component
likelihoods into a single
‘combined’ function

4

L master(M)=Lyy*Lzz* L > Calculation of P-value(no-Higgs)
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The full ATLAS Higgs combination in a single workspace...

Atlas Higgs combination model (23.000 functions, 1600
parameters)

Model has ~23.000 function objects, ~1600 parameters

Reading/writing of full model takes ~4 seconds
ROOT file with workspace is ~6 Mb




RooStats — Statistical analysis of RooFit models

* With RooFits one has (almost) limitless possibility to construct
probability density models

— With the workspaces one also has the ability to deliver comtined osun
such models to statistical tools that are completely it .
decoupled from the model construction code. A
Will now focus on the design of those statistical tools

Expacied Ay o 1o

 The RooStats projected was started in 2007 as :
a joint venture between ATLAS, CMS, the ROOT &t

team and myself. , —
Goal: to deliver a series of tools that can calculate gil
Intervals and perform hypothesis tests using a <
variety of statistical techniques "
— Frequentist methods (confidence intervals, hypothesis testin S
. . . . %-qmﬁh.mm_n
— Bayesian methods (credible intervals, odd-ratios) = /
— Likelihood-based methods | /
2
Confidence intervals: [0, 6,],or 6<X at 95% C.L. '::_
Hypothesis testing: > p(data|6=0) = 1.107 e

LE



The result — evolution over time — July 2011

« Full analysis and combination chain in place since 2011.

« Since mass of Higgs boson was not a priori known
and gives that properties of Higgs depends strongly on it,
p-value (input to discovery declaration) calculated for a range
of assumed Higgs masses (110-150 GeV)

p-value’
Juli 2011
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The result — evolution over time — December 2011

« Full analysis and combination chain in place since 2011.

« Since mass of Higgs boson was not a priori known
and gives that properties of Higgs depends strongly on it,
p-value (input to discovery declaration) calculated for a range
of assumed Higgs masses (110-150 GeV)
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The result — evolution over time — April 2012

« Full analysis and combination chain in place since 2011.

« Since mass of Higgs boson was not a priori known
and gives that properties of Higgs depends strongly on it,
p-value (input to discovery declaration) calculated for a range
of assumed Higgs masses (110-150 GeV)

p-value’
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The result — evolution over time — June 2012

« Full analysis and combination chain in place since 2011.

« Since mass of Higgs boson was not a priori known
and gives that properties of Higgs depends strongly on it,
p-value (input to discovery declaration) calculated for a range
of assumed Higgs masses (110-150 GeV)
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The result — evolution over time — July 2012

« Full analysis and combination chain in place since 2011.

« Since mass of Higgs boson was not a priori known
and gives that properties of Higgs depends strongly on it,
p-value (input to discovery declaration) calculated for a range
of assumed Higgs masses (110-150 GeV)
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Juli 2012
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July 4 — Declaration of discovery
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Vs =7 TeV (2011}, [Lat= 48"
is = 8TeV (2012), [Ldt = 5.8 16"

After July 4 — A small party :
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Summary

« The discovery of the Higgs has been one of the most complex data
analysis challenges performed in particle physics

— No single Higgs decay signature was sufficiently powerful to result in a discovery

— Due to the unknown Higgs mass it wasn’t even known in advance where to look
best

« Enormous effort to isolate LHC collision events with Higgs-like
signature in many decay channels in parallel

— Event selection process often helped with machine-learned criteria (e.g. boosted
decision trees) [ Tools: TMVA, Neurobayes ]

— Likelihood models built describing selected that maximize statistical power by
taking into account properties of selected events, and_ take into account known
uncertainties on hundreds of aspects of detector and theory simulation
[ Tools: RooFit, RooStats, Histfactory ]

« Joint likelihood model across all channels combines information
into single most powerful test

— Convincing evidence obtained first on July 2012 dataset, when it was calculated
that the odds of the observed signal arising as a statistical fluctuation (‘no Higgs
hypothesis’) was less than 1 in ~3.500.000 (‘5 sigma’)
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