Best Practices In
Software Development

Axel Naumann, CERN PH-SFT
Openlab Summer Student Lectures, 2014-08-21

Bugs!

Axel Naumann, CERN PH-SF
Openlab Summer Student Lectures, 2014-08-21

Coding

e Part of XYZ or on top of XYZ (or replacing XYZ!)
 Language

e “community” knowledge

* your knowledge

e practicality

Practices

e More than one dev or more than one user: need to
agree on "how”

« CERN has decades of piles of code, lessons
learned:

1. be reasonable!
2. enforce!

3. fix rules early, adapt slowly

Best Practices

¥ PRACTICES

i

WE WILL BE ADOPTING § IFEVERYONETS [¢] gTOp MAKING
T PRACT ’ 3
"INOUR NoUSTRY, |1 PRACTIceste e [5| MEDIOCRITY
JUST LIKE EVERYONE g SAME THING AS 3 SOUND BAD!
ELSE. i MEDIOCRE. r \l/
3 :
) 5 T / § SORRY.
BEST t ' —
E -
3 :

Best Practices

 Don't follow today’s best Best Practices blindly
* it will be ridiculed in a month anyway

 But having them is simpler than arguing for /
reminding of each rule’s motivation

Votivation

e Simpler, consistent read
* mproved communication with fellow coders
* |ess ambiguities means more correct code
* |Less bugs; better maintenance

* Best practices win against experimental coding

Vienu

Coding convention
Interface jargon
Change management
Multi-platform support

Tests: code-correctness, functionality, static
analysis, performance

Disclaimer

* | am not your best practices superhero
 Focus on C++

* experience, usage, need

Coding Convention

Coding Convention

 What is this”
func(val);

Coding Convention

e |t's a counter-example!
func(val);

e func: Member function”? Data member / function
pointer? Some global function pulled in from
header?

* val: local variable declared 100 lines up In the
same function? Or member? Or enum constant?
And where can | find it's declaration?”

Coding Convention

fFunc(fgval);

it's ROOT - you can tell from the names!
It's a function call
fFunc is a member - so it's a function pointer!

fgVal is a static data member; must be in same
class (or base)

Coding Convention

* Obvious case of improved clarity
* For APls, user friendly:
e get_track(), getTrack(), GetTrack() - or Track()?

 Almost all projects employ it

Coding Convention

e Jypical current examples for C++:

* Joint Strike Fighter Air Vehicle C++ Coding
Standards

e MISRA C++
e Both absurd for reasonable environments

* Both have very reasonable ingredients: pick yours!

Coding Convention

* Enforcing needs checkers

 Non-trivial; checker must understand C+4+: what is
a function, what is a member etc

« Many C-coding convention checkers (indentation!),
few C++, even less open source

Interface Jargon

Interface Jargon

PLEASE FOLLOW THE'RULES

LANGUAGE/ANL nkl >

. b Healte -

‘ ~'. NN

? “‘m ‘ ‘\‘.‘ ‘

. e~ | - A \ ~
) o G . __memecrunch.c

Interface Jargon

e Consistency - we know that already
* Safe code through good APIs!

e unigue_ptr/ shared_ptr instead of Type* where
ownership Is managed; never require "new

ype()”, *

“delete var’

 document also parameter pre- and post-
condition: arg1 must be != 0; arg2 will contain...

Interface Jargon

Maintain common idioms throughout API; example
C++ std library:

e jterators: functor: make XY/Z: allocator etc
Don't screw with your users

e If iInterface looks like A, don't make it do B even if
t's better for you. Change the interface instead.

Threading Support

Different levels
e starts threads to compute faster [multithreaded]

e function can be used on same object in multiple,
concurrent threads without side-etfects [reentrant]

e function can be used on different objects in multiple,
concurrent threads without side-effects (no statics)

 must be locked when accessed through multiple
threads [no threading support]

Threading Support

All kinds need to be clearly documented
Reentrant part of AP| needs to be visible
Common contract nowadays:

e const APl means it’'s reentrant: no mutables! no
caches! no hidden state changes!

* no (unlocked) static variables! State is passed as
arguments

Threading Support

* Thus threading support is to a large extend
interface jargon

* This is work in progress; has changed rather
recently

e expect further changes; constexpr might play a
bigger role soon

e exposing to >64 threads might change
requirements (Amdahl’s law!) + style

Interface Jargon +
Threading Support

* Automated checking (beyond coding convention)
almost impossible

* requires design work / understanding of the
INnterfaces

* Employ change management instead!

Change Management

Change Management

Monitor by a second pair of eyes: two brains are
better than one

Avoids bugs creeping In

Also exposes code, new features to additional /
backup developers

Exposes changes to larger horizon: we all think of
changes in different contexts

Change Management

NO, I NEED
CONSTANT
SUPERVISION.

WALLY, DID YOU
GET THOSE COST
ESTIMATES I ASKED
FOR LAST WEEK?

DO YOU
HAVE TIME
TO WATCH?

92107 ©2007 Scott Adams, Inc./Dist. by UFS, Inc.

www.dilbert.com scottadams®acl.com

Change Management

* Pre-publication

 package tags /tag collector (dying concept);
iInstead: change merge as package owner action

e formalized patch review
e palir programming
* Post-publication

 commit review by package owner

Multi-Platform Support

Multi-Platform Support

* Problems:
* DIig- versus little-endian
 OS AP
e |ack of language support in compiler

* Developers will get a feeling for what's causing
problems

Multi-Platform Support

 Advantages
* general robustness
* easier to follow architecture changes
* will x86_64 be the instruction set of 20307

* more compilers = more opinions on code, more
warnings (that's a good thing!)

Multi-Platform Support

e Checking by building on many platforms, regularly

e Code Correctness Tests!

lests

DONT YOUTHINK THAT,IF | WERE WRONG

1D KNOW IT?”

Code Correctness Tests

e [Large matrix of builds

* build on all supported platforms

* build with all supported configurations
* |deally after every change

* helps pinpoint culprits

e Current common grounds: the HEAD works.

Code Correctness Tests

* Run build (incremental or full)
* check for errors versus platform
e also check for warnings!

* Run tests

* Build snapshot binaries

e continuous delivery or bug fix verification

Code Correctness Tests

e Needs automation

ypical tools: Jenkins / Hudson; Bamboo;
eamCity; BuildBot; Electric Commander

schedule and initiate build on all required
machines

collect output; filter errors, warnings

report (web, email) versus code revision

Functionality lests

* “Does my software actually work™?”

» Science by itself; ingredients:
e unit tests; regression tests; integration tests
* rules when to write a test

» testing libraries: cppunit / Google’s 5 or so / Clest

e Needs automation!

lopical lests

 Memory error checkers - use after free / before
initialization

* e.g. valgrind

e [hread error checkers

* e.g. hellgrind

Static Analysis

#include <iostream>
: int func(char* buf) {
strcat(buf, “<default>”);
if (!buf) return 1;
int pos;
std::cout << “Number between 0 and 8:\n”;
std::cin >> pos;
buf[pos] = 0;
if (!buf) return 12;
return 9;

coNOuUVIhWDNEOO

 What's wrong? (| see 4 errors.)

Static Analysis

* Analyzes source code without running it; creating
branch tree to follow possible if etc combinations

* Finds use after delete; impossible it conditions;
MeMmMory errors etc

 Cannot be replaced by test suite: it tests the things
that "never happen”

Static Analysis

e Several tools out there, for instance
* pasic checker: compiler warnings!
e clang static analysis
e Coverity
e Ditfer in set of bugs checked; tracing capabillities

(through function calls etc); user intertace; false
positive rate

Performance Test

 Changes can deteriorate performance:
* takes more CPU cycles to get an answer
* takes more RAM
* takes more |/O operations
e takes more disk space

» Criteria vary depending on product

Performance Test

Usually part of release baking
Better yet: automate
Problem: which changes are intentional?

Tools vary with criteria; e.g. cgroups; massif;
CDash

100%

Current Challenges

Massive multi-threading
Data-oriented programming
C++11 and up

Move every tool into the FOSS world

Conclusion

* (Good software development is an art by itself

* complex; many aspects; need to juggle many
tools and often contlicting goals

e Using tools pays off:

e 1 hour more work for one dev means 10 minutes
saved for 10k users each

* users will trust your software more

