Jet results in heavy ion collisions from CMS

Yen-Jie Lee (MIT)
For the CMS collaboration

2nd Conference on Heavy Ion Collisions in the LHC era and beyond
Quy Nhon, Vietnam
26-31 July, 2015
Probing the properties of the medium

Collisional energy loss

Radiative energy loss

Strong coupling: “AdS drag force”

Goal: understand the properties of the produced medium

Status: validating the theoretical understanding of jet quenching
Jet quenching without jets

SPS 17.3 GeV (PbPb)
- π° WA98 (0-7%)
- RHIC 200 GeV (AuAu)
- π° PHENIX (0-10%)
- h± STAR (0-5%)
- LHC 2.76 TeV (PbPb)
- CMS (0-5%)
- ALICE (0-5%)
- GLV: dN/dy = 400
- GLV: dN/dy = 1400
- GLV: dN/dy = 2000-4000
- YaJEM-D
- elastic, small P_{esc}
- elastic, large P_{esc}
- YaJEM
- ASW
- PQM: $\langle \phi \rangle = 30 - 80$ GeV2/fm

R_{AA} vs p_T (GeV/c)
Why do we study jet quenching with jets?

![Graph showing jet quenching](image)

\[z = \frac{p_{\text{jet}} \cdot p_{\text{ch}}}{|p_{\text{jet}}|^2} \]

Yen-Jie Lee (MIT)
2nd Conference on HI Collisions
EPJC 71 (2011) 1795
Jet as a versatile probe

Probe the Initial State Effects:
Extraction of nPDF

Probe the Final State
Modification of Jets

Search for medium response
Where does the quenched energy go?
Jet as a versatile probe

Probe the Initial State Effects: Extraction of nPDF

→ $p(d)A$ collisions
(Di-)Jet production in pPb collisions at 5.02 TeV

Inclusive (charged) jet R_{pPb}

- CMS full jet, $-0.5 < \eta_{cm} < 0.5$
- ALICE charged jet, $-0.5 < \eta_{cm} < 0.5$
- ATLAS full jet, $-0.3 < \eta_{cm} < 0.3$

Jet $R_{pPb} \approx 1.1 \pm 0.2$, Consistent with pQCD calculation with EPS09 nPDF

Subleading Jet p_T / leading jet p_T

- $p_{T,1} > 120$, $p_{T,2} > 30$ GeV/c
- $|\eta| < 3$, $\Delta\phi_{1,2} > 2\pi/3$

CMS pPb 35 nb$^{-1}$

$\sqrt{s_{NN}} = 5.02$ TeV

EPJC 74 (2014) 2951
Jet quenching from dijet analysis in pPb:
- Dijet asymmetry <2%
- No sizable deviation from unity found in jet R_{pPb}

→ Jets for nPDF studies!

CMS pPb 35 nb$^{-1}$
$\sqrt{s_{NN}} = 5.02$ TeV
$p_{T,1} > 120$ GeV/c
$p_{T,2} > 30$ GeV/c
$\Delta \phi_{1,2} > 2\pi/3$
All $E_T^{j} > 4$

Boosted PYTHIA6 Z2
@ 5.02 TeV

EMC

Anti-shadowing

Shadowing

In the lab frame

EPJC 74 (2014) 2951
Compare to CT10 and CT10+EPS09

CMS pPb 35 nb^{-1}

- $\sqrt{s_{NN}} = 5.02$ TeV
- $p_{T,1} > 120$ GeV/c
- $p_{T,2} > 30$ GeV/c
- $\Delta \phi_{1,2} > 2\pi/3$
- All E_T \(4 < |\eta| < 5.2\)

Hannu’s QM14 talk
Dijet $dN/d\eta$ vs. event activity

(Too) large modification vs. event activity.
Can not be explained by centrality dependent nPDF
Jet fragmentation pattern in pPb

- Track p_T spectra inside the jet cone is measured in pPb collisions
- Ratio of pPb and the interpolated pp reference is consistent with unity
Jet as a versatile probe

Probe the Initial State Effects: Extraction of nPDF

Probe the Final State Modification of Jets
Probe the QGP with high energy quarks and gluons

Increased rate of asymmetric dijets in central PbPb collisions
Probe the QGP with high energy quarks and gluons

Small A_J

Large A_J ($A_J \sim 0.5$)

Increased rate of asymmetric dijets in central PbPb collisions

$A_J = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$

Yen-Jie Lee (MIT)
Jet Fragmentation at LHC

Using **Jet Energy** as a reference

CMS FF R_{AA} compared to ATLAS FF R_{CP}

$$Z = \frac{p_{||}^{\text{Trk}}}{p^{\text{Jet}}}$$

Qualitative consistent results between CMS and ATLAS

ATLAS: indication of enhancement of low ξ (high z) particles in the jet cone

![Graph showing CMS and ATLAS results](image)

- **CMS-HIN-12-013**
 - 0-10%/pp
 - $100 < p_{T}^{\text{jet}} < 300$ GeV/c

- **ATLAS QM2014**
 - 0-10%/60-80%
 - $p_{T}^{\text{jet}} > 100$ GeV/c

CMS: PRC 90 (2014) 024908
ATLAS: PLB 739 (2014) 320-342

High p_{T} particles
Low p_{T} particles
Photon-Jet correlation

\[x_{J\gamma} = \frac{p_{T\text{jet}}}{p_{T\gamma}} \]

- \(p_{T\gamma} > 60 \text{ GeV/c} \)
- \(p_{T\text{jet}} > 30 \text{ GeV/c} \)
- \(\Delta\phi_{J\gamma} > \frac{7}{8}\pi \)
- \(|\eta\gamma| < 1.44 \)
- \(|\eta\text{Jet}| < 1.61 \)

CMS-PAS-HIN-13-006
PLB 718 (2013) 773

- ~10% of the jet energy goes out of the jet cone
- Where does the quenched energy go?

PbPb Data
Smeared pp reference
PbPb PYTHIA + HYDJET

0% - 10%
Jet as a versatile probe

Probe the Initial State Effects: Extraction of nPDF

Probe the Final State Modification of Jets

Search for medium response Where does the quenched energy go?
Significant energy flow out of the jet cone

Tracks in the jet cone
ΔR<0.8

Tracks out of the jet cone
ΔR>0.8

CMS

PRC 84 (2011) 024906
Significant energy flow out of the jet cone

Tracks in the jet cone \(\Delta R < 0.8 \)

Tracks out of the jet cone \(\Delta R > 0.8 \)

Jet collimation

PRC 84 (2011) 024906
Significant energy flow out of the jet cone

Tracks in the jet cone $\Delta R < 0.8$
Tracks out of the jet cone $\Delta R > 0.8$

Jet collimation

Decoherence

CMS

PRC 84 (2011) 024906
Significant energy flow out of the jet cone

Tracks in the jet cone \(\Delta R < 0.8 \)
Tracks out of the jet cone \(\Delta R > 0.8 \)

Jet collimation

Decoherence

Turbulence cascade

CMS

PRC 84 (2011) 024906
Tracks in the jet cone $\Delta R<0.8$

Tracks out of the jet cone $\Delta R>0.8$

Significant energy flow out of the jet cone

Jet collimation

Decoherence

Turbulence cascade

Third jet quenching

CMS

PRC 84 (2011) 024906
Significant energy flow out of the jet cone

Tracks in the jet cone $\Delta R < 0.8$

Tracks out of the jet cone $\Delta R > 0.8$

Jet collimation

CMS

Decoherence

Turbulence cascade

Third jet quenching

Strongly coupling approach, hydro

PRC 84 (2011) 024906
Significant energy flow out of the jet cone

Jet collimation

Decoherence

Turbulence cascade

Third jet quenching

Strongly coupling approach, hydro

(1) How many particles are carrying the missing energy?

(2) What is the angular distribution of the quenched energy flow with respect to the dijet axis?
Measurement of quenched energy flow

Idea: Use all charged particles ($p_T > 0.5$ GeV/c)
Study the transverse momentum balance (uncorrelated UE cancels)

Leading jet
Subleading jet

Difficulty: Large PbPb underlying event (UE)
What is the **multiplicity** of the particles that balance the “extra” lost p_T?
What is the *multiplicity* of the particles that balance the “extra” lost p_T?

Compare the multiplicities in the **leading** and **subleading jet** hemispheres.

Direction of the dijet is defined as:

$$\phi_{\text{dijet}} = \frac{1}{2}(\phi_1 + (\pi - \phi_2))$$

(In contrast to PRC 84 (2011) 024906, where the leading jet direction was used)

Provide UE cancellation differential in ΔR
Multiplicity difference (subleading – leading jet)

What is the multiplicity of the particles that balance the “extra” lost p_T?

Compare the multiplicities in the leading and subleading jet hemispheres.

Direction of the dijet is defined as:

$$\varphi_{\text{dijet}} = \frac{1}{2} (\varphi_1 + (\pi - \varphi_2))$$

(In contrast to PRC 84 (2011) 024906, where the leading jet direction was used)

Provide UE cancellation differential in ΔR

$$\Delta_{\text{mult}} = N_{\text{ch in subleading jet hemisphere}} - N_{\text{ch in leading jet hemisphere}}$$
Multiplicity difference (subleading – leading jet)

\[A_J = \frac{(p_{T,1} - p_{T,2})}{(p_{T,1} + p_{T,2})} \]

Multiplicity difference between the subleading and leading hemisphere is increasing vs. dijet asymmetry in \(pp \) and peripheral \(PbPb \).

There are more charged particles in the subleading hemisphere.
Multiplicity difference (subleading – leading jet)

This increase is larger in central PbPb

The enhancement in PbPb compared to pp increases with centrality

Large A_J, 0-10%: ~ 14 extra particles ($p_T > 0.5$ GeV) in the subleading jet hemisphere
What is the multiplicity and p_T spectra of the particles that balance the lost p_T?

\[p_T^{\parallel} = \sum_i -p_T^i \cos (\phi_i - \phi_{\text{Dijet}}) \]

Projection to dijet axis

Charged particle azimuthal angle

Dijet axis

\[\frac{1}{2}(\phi_1 + (\pi - \phi_2)) \]

\[\phi_{\text{dijet}} \]
Missing p_T^{\parallel} vs. A_J

More energy flow in the **subleading** jet direction

More energy flow in the **leading** jet direction

Missing p_T from high p_T particles increases as a function of A_J

In **pp** → Balanced by 2-8 GeV/c particles

In 0-10% **PbPb** → Balanced by particles with $p_T < 2$ GeV/c

CMS PAS-HIN-14-010

Yen-Jie Lee (MIT) 2nd Conference on HI Collisions 32
What is the angular distribution of these particles with respect to the dijet system?

Calculate the missing p_T for charged particles that fall in slices of ΔR

$$p_T^\parallel = \left(\sum_i -p_T^i \cos (\phi_i - \phi_{\text{dijet}}) \right)_{R_{\text{down}} < \Delta R < R_{\text{up}}}$$

$$\Delta R = \sqrt{\Delta \phi_{\text{Trk, jet}}^2 + \Delta \eta_{\text{Trk, jet}}^2}$$
What is the **angular distribution** of these particles with respect to the dijet system?

Calculate the missing p_T for charged particles that fall in slices of ΔR.

$$p_T^\parallel = \left(\sum_i -p_T^i \cos (\phi_i - \phi_{\text{dijet}}) \right) |_{R_{\text{down}} < \Delta R < R_{\text{up}}}$$

$$\Delta R = \sqrt{\Delta \phi^2_{\text{Trk,jet}} + \Delta \eta^2_{\text{Trk,jet}}}$$
Calculate the missing p_T for charged particles that fall in slices of ΔR

$$p_T^\parallel = \left(\sum_i -p_T^i \cos(\phi_i - \phi_{\text{dijet}})\right) |_{R_{\text{down}} < \Delta R < R_{\text{up}}}$$

$$\Delta R = \sqrt{\Delta \phi_{\text{Trk,jet}}^2 + \Delta \eta_{\text{Trk,jet}}^2}$$

What is the angular distribution of these particles with respect to the dijet system?
Missing p_T^\parallel vs. ΔR in pp

Subleading jet direction

Contribution from third jet

Leading jet direction

Asymmetry inside the jet cone

CMS Preliminary

$|\eta_{,1}|, |\eta_{,2}| < 0.50$, $\Delta \phi_{,1,2} > 5\pi/6$

anti-k_T Calo $R=0.3$

$|\eta_{trk}| < 2.4$

p_{trk}^\parallel (GeV/c):
- 0.5 - 1.0
- 2.0 - 4.0
- 1.0 - 2.0
- 4.0 - 8.0
- > 0.5
- 8.0 - 300.0

CMS-PAS-HIN-14-010
Missing p_T^\parallel vs. ΔR

Subleading jet direction

Leading jet direction

CMS PAS-HIN-14-010

Yen-Jie Lee (MIT) 2nd Conference on HI Collisions
Missing p_T^\parallel vs. ΔR

Subleading jet direction

Leading jet direction

Cumulative energy flow are similar

Open circles: Integrated over particle p_T

Inclusive A_J
Missing p_T^\parallel vs. ΔR

Cumulative energy flow are similar

High p_T imbalance at small ΔR

Inclusive A_J

CMS-PAS-HIN-14-010
Missing p_T^\parallel vs. ΔR

High p_T imbalance at small ΔR

Balanced by low p_T particles in subleading jet direction

Extends up to large ΔR

Cumulative energy flow are similar

Inclusive A_J

CMS-PAS-HIN-14-010

Yen-Jie Lee (MIT)
Significant energy flow out of the jet cone

Jet collimation

Decoherence

Turbulence cascade

Third jet quenching

Strongly coupling approach, hydro

(1) How many particles are carrying the missing energy?
(2) What is the angular distribution of the quenched energy flow with respect to the dijet axis?
Jet data vs. JEWEL

Jet Quenching Monte Carlo based on weak coupling approach:

Reasonable description of jet FF, jet R_{AA} and charged hadron R_{AA}
Description of the jet data with strong coupling approach

Jet R_{AA}

Jet FF

Quark/Gluon Ratio A_J

Dijet Asymm.
Outlook

• LHC Run II: PbPb @ 5 TeV in 2015
 • High statistics photon-jet sample
 • Z-jet correlation
 • Multi-jet correlation
 • Flavor tagged jet

• Need an iterative feedback cycle between theory and experiment
 • Quenched jet event generator
 • Tell us your favorite analysis with Run II data!
Backup slides
Consistent picture: excess of low p_T particle in the jet cone

PHENIX
Photon-tagged Hadron I_{AA}

$5 < p_T^\gamma < 9 \text{ GeV/c} \times 0.5 < p_T^h < 7 \text{ GeV/c}$

- $|\Delta \phi - \pi| < \pi/2$
- $|\Delta \phi - \pi| < \pi/3$
- $|\Delta \phi - \pi| < \pi/6$

- global sys = ± 6%

(a)

$PbPb - pp$

CMS Preliminary

$Z = p_{||}^{\text{Trk}} / p_{\text{Jet}}$

STAR
Jet-Hadron

$\Delta D(z)$

$ATLAS Preliminary$

$PbPb$ at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

0.14 nb$^{-1}$

anti-k_t, $R=0.3$

$92 < p_T^{\text{jet}} < 92$ GeV/c

0-10% - 60-80%

Data

Systematic Uncertainty

$Z = p_{||}^{\text{Trk}} / p_{\text{Jet}}$