Second conference on heavy ion collisions in the LHC era and beyond

Heavy quark pair production in pA collisions at the LHC within the CGC framework

Kazuhiro Watanabe (CCNU)

work in collaboration with
Hirotsugu Fujii (Univ of Tokyo), Bowen Xiao (CCNU)

Talk Plan
Heavy quark pair production in HIC

- The goals of ultrarelativistic heavy ion collisions (HICs) physics are to create quark-gluon plasma (QGP) and to understand its properties.

- Heavy quark pair is produced in initial hard process \rightarrow Subsequent interactions reflect medium properties.

- Initial cold nuclear matter (CNM) effects, such as nPDF, energy loss, parton saturation, should be studied in pA collisions \rightarrow A controlled baseline against AA.
At the LHC, HQ productions can be reflected of small-x information of dense gluon for the target hadron.

Their typical transverse momentum is around the saturation momentum:

\[Q_{sA}^2(x_2) \sim A^{1/3} \left(\frac{0.01}{x_2} \right)^{0.3} \Lambda_{QCD}^2 \]

→ a test of CGC
The CGC formula

- **kt-factorized formula**

\[
\frac{d\sigma_{q\bar{q}}}{d^2 q_{\perp} d^2 q_{\perp} dy_d y_{\bar{q}}} = \frac{\alpha_s^2}{(2\pi)^6 C_F} \int d^2 k_{2\perp} d^2 k_{\perp} \frac{\Xi(k_{1\perp}, k_{2\perp}, k_{\perp})}{k_{1\perp}^2 k_{2\perp}^2} \varphi_{p,x_1}(k_{1\perp}) \phi_{A,x_2}(k_{2\perp}, k_{\perp})
\]

- **Hybrid (DHJ) formula : collinear/CGC (Forward regions)**

\[
\frac{d\sigma_{q\bar{q}}}{d^2 q_{\perp} d^2 q_{\perp} dy_d y_{\bar{q}}} = \frac{\alpha_s^2}{16\pi^2 C_F} \int d^2 k_{\perp} \frac{\Xi_{\text{coll}}(k_{2\perp}, k_{\perp})}{k_{2\perp}^2} x_1 G(x_1, \mu) \phi_{A,x_2}(k_{2\perp}, k_{\perp})
\]

High energy limit : \(s \to \infty\)
The multipoint function

\[\phi_{A,Y_g}^{q\bar{q},g}(k_{2\perp}, k_{\perp}) \propto \int \frac{d^2 x_\perp d^2 y_\perp}{(2\pi)^4} e^{-i k_{\perp} \cdot x_\perp} e^{i(k_{2\perp} - k_{\perp}) \cdot y_\perp} S_{Y_g}(x_\perp) S_{Y_g}(y_\perp) \]

\[= F_{Y_g}(k_{\perp}) F_{Y_g}(k_{2\perp} - k_{\perp}) \]

\[Y_g = \ln \frac{1}{x^2} \]

The multipoint function is the same in both CEM and color octet channel of NRQCD in large-Nc.

Nuclear dependence is expected to be universal for quarkonium production.

Qiu, Sun, Xiao and Yuan, PRD89(2014)
Balitsky-Kovchegov equation

- BK equation: Quantum evolution of dipole

\[
\frac{d}{dY} N_Y(\vec{r}_\perp) = \int d\vec{r}_1^\perp \mathcal{K}(\vec{r}_\perp, \vec{r}_1^\perp) \left[N_Y(\vec{r}_1^\perp) + N_Y(\vec{r}_2^\perp) - N_Y(\vec{r}_\perp) - N_Y(\vec{r}_1^\perp)N_Y(\vec{r}_2^\perp) \right]
\]

BFKL cascade
Recombination

- The running coupling evolution kernel (rcBK)

\[
\mathcal{K}_{\text{run}}(\vec{r}_\perp, \vec{r}_1^\perp) = \frac{\alpha_s(r^2) N_c}{2\pi^2} \left[\frac{1}{r_1^2} \left(\frac{\alpha_s(r_1^2)}{\alpha_s(r_2^2)} - 1 \right) + \frac{r^2}{r_1^2 r_2^2} + \frac{1}{r_2^2} \left(\frac{\alpha_s(r_2^2)}{\alpha_s(r_1^2)} - 1 \right) \right]
\]

rcBK is the state-of-the-art technology for phenomenologies

I. Balistky (2007)
Initial condition of the rcBK

- Parametrized initial condition at $x=0.01$: MV^γ model

$$N_{Y=0}(r_\perp) = 1 - \exp \left[-\frac{(r^2 Q_{s0,p}^2)^\gamma}{4} \ln \left(\frac{1}{\Lambda r} + e\right)\right] \quad (*\Lambda = 0.241\text{GeV})$$

$$\alpha_s(r^2) = \left[b_0 \ln \left(\frac{4C^2}{r^2 \Lambda^2} + a\right)\right]^{-1}$$

$$\alpha_s(r \to \infty) = \alpha_{fr}$$

Global analysis of DIS data

<table>
<thead>
<tr>
<th>$Q_{s0,p}^2/\text{GeV}^2$</th>
<th>γ</th>
<th>α_{fr}</th>
<th>C</th>
<th>χ^2/d.o.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV$^\gamma$</td>
<td>0.1597</td>
<td>1.118</td>
<td>1.0</td>
<td>2.47</td>
</tr>
</tbody>
</table>

γ controls the steepness of the gluon distribution at higher momentum $k_\perp > Q_{s0,p}$

cf. for rcBK:
Fujii, Itakura, Kitadono, Nara, JPG38(2011),
Albacete, Dumitru, Fujii, Nara, NPA897 (2013)
Dipole gluon distribution function

\[\Phi^g_{Y} (k_{\perp}) \propto \int \frac{d^2x_{\perp}}{(2\pi)^2} e^{-ik_{\perp} \cdot x_{\perp}} S_Y(x_{\perp}) S_Y(x_{\perp}) \]

Forward rapidity at RHIC

\[x_2 = 10^{-2} \sim 10^{-3} \]

\[Q_{sp} < 1\text{GeV} \]

\[Q_{sA} \sim 2\text{GeV} \]

Forward rapidity at the LHC

\[x_2 = 10^{-4} \sim 10^{-5} \]

\[Q_{sp} \sim 1\text{GeV} \]

\[Q_{sA} \sim 3\text{GeV} \]
Early CGC results 1

Quarkonium
Fujii, KW, NPA915(2013)

Color evaporation model (CEM)
Open heavy flavor seems in good agreement with the data compared to quarkonium.
Early results

$Q_{s0,A}^2 = (4 \sim 6)Q_{s0}^2$

Another choice

$Q_{s0,A}^2 = (2 \sim 3)Q_{s0}^2$

cf. Ma, Venugopalan, and Zhang, arXiv:1503.07772,
Ducloue, Lappi, and Mantysaari, arXiv:1503.02789

Fig. 14. Nuclear modification factor R_{pA} for J/ψ as a function of $Q_{s0,A}^2$ at $y = 0, 1, 2$ and 3 for $\sqrt{s} = 200$ GeV (left) and at $y = 0, 1, 2$ and 4 for $\sqrt{s} = 5.02$ TeV (right). Fitted curves are also shown.

$R_{pA} = \frac{a}{(b + Q_{s0,A}^2)^\alpha}$

Fig. 15. Nuclear modification factor R_{pA} for $\Upsilon(1S)$ as a function of Q_N^2 at $y = 0, 1, 2$ and 4 at $\sqrt{s} = 5.02$ TeV.
"LHCb puzzle"

- The saturation scale at the LHC is about 1GeV.
- What is the LHC data telling?

These results are computed in hybrid formula.
Two kinds of correction

- **Small-x**
 \[\alpha_s N_c \ln \frac{1}{x_2} \sim \mathcal{O}(1) \]

 BK eq.

- **Low-pt**
 \[\alpha_s N_c \ln^2 \frac{M^2}{p_{\perp}^2} \sim \mathcal{O}(1) \]

 Sudakov factor

 cf. Higgs boson production

“Heavy” quarkonium production at low-pt is expected to be sensitive to the Sudakov factor: \(p_t < M \).

KW and Xiao, arXiv:1507.06564
The CGC formula with the Sudakov factor

\[\frac{d\sigma_{q\bar{q}}}{d^2q_{\perp} d^2\bar{q}_{\perp} dy_q dy_{\bar{q}}} = \frac{\alpha_s^2}{16\pi^2 C_F} \int d^2l_{\perp} d^2k_{\perp} \frac{\Xi_{\text{coll}}(k_{2\perp}, k_{\perp} - zl_{\perp})}{k_{2\perp}^2} \phi_{x_1,x_2}(k_{2\perp}, k_{\perp}, l_{\perp}) \]

\[\phi_{x_1,x_2}(k_{2\perp}, k_{\perp}, l_{\perp}) \propto F_{Y_g}(k_{\perp}) F_{Y_g}(k_{2\perp} - k_{\perp} + l_{\perp}) F_{\text{Sud}}(l_{\perp}) \]

\[F_{\text{Sud}}(M,l_{\perp}) = \int \frac{d^2b_{\perp}}{(2\pi)^2} e^{-ib_{\perp} \cdot l_{\perp}} e^{-S_{\text{Sud}}(M,b_{\perp})} x_1 G \left(x_1, \frac{c_0}{b_{\perp}} \right) \]
The CGC formula with the Sudakov factor

\[
\frac{d\sigma_{q\bar{q}}}{d^2 q_{\perp} d^2 \bar{q}_{\perp} dy_q dy_{\bar{q}}} = \frac{\alpha_s^2}{16\pi^2 C_F} \int d^2 l_{\perp} d^2 k_{\perp} \frac{\Xi_{\text{coll}}(k_{2\perp}, k_{\perp} - z l_{\perp})}{k_{2\perp}^2} \phi_{x_1, x_2}(k_{2\perp}, k_{\perp}, l_{\perp})
\]

Improved Hybrid formula

\[
\phi_{x_1, x_2}(k_{2\perp}, k_{\perp}, l_{\perp}) \propto F_{Yg}(k_{\perp}) F_{Yg}(k_{2\perp} - k_{\perp} + l_{\perp}) F_{\text{Sud}}(l_{\perp})
\]

\[
F_{\text{Sud}}(M, l_{\perp}) = \int \frac{d^2 b_{\perp}}{(2\pi)^2} e^{-i b_{\perp} \cdot l_{\perp}} e^{-S_{\text{Sud}}(M, b_{\perp})} x_1 G \left(x_1, \frac{c_0}{b_{\perp}} \right)
\]
The CGC formula with the Sudakov factor

\[d \sigma_{q\bar{q}} \frac{d^2 q_{\perp}}{d^2 q_{\perp}d^2 q_{\perp} dy_q dy_{\bar{q}}} = \frac{\alpha_s^2}{16\pi^2 C_F} \int d^2 l_{\perp} d^2 k_{\perp} \frac{\Xi_{\text{coll}}(k_{\perp}, k_{\perp} - zl_{\perp})}{k_{\perp}^2} \phi_{x_1,x_2}(k_{2\perp}, k_{\perp}, l_{\perp}) \]

Improved Hybrid formula

\[\phi_{x_1,x_2}(k_{2\perp}, k_{\perp}, l_{\perp}) \propto F_{Y_g}(k_{\perp}) F_{Y_g}(k_{2\perp} - k_{\perp} + l_{\perp}) F_{\text{Sud}}(l_{\perp}) \]

Sudakov

\[F_{\text{Sud}}(M, l_{\perp}) = \int \frac{d^2 b_{\perp}}{(2\pi)^2} e^{-ib_{\perp} \cdot l_{\perp}} e^{-S_{\text{Sud}}(M, b_{\perp})} x_1 G \left(x_1, \frac{c_0}{b_{\perp}} \right) \]
The CGC formula with the Sudakov factor

\[
\frac{d\sigma_{q\bar{q}}}{d^2q_\perp d^2\bar{q}_\perp dy_q dy_{\bar{q}}} = \frac{\alpha_s^2}{16\pi^2 C_F} \int d^2l_\perp d^2k_\perp \frac{\Xi_{\text{coll}}(k_\perp, k_\perp - zl_\perp)}{k_\perp^2} \phi_{x_1,x_2}(k_\perp, k_\perp, l_\perp)
\]

Improved Hybrid formula

\[
\phi_{x_1,x_2}(k_\perp, k_\perp, l_\perp) \propto F_{Yg}(k_\perp) F_{Yg}(k_\perp - k_\perp + l_\perp) F_{\text{Sud}}(l_\perp)
\]

Sudakov

\[
F_{\text{Sud}}(M, l_\perp) = \int \frac{d^2b_\perp}{(2\pi)^2} e^{-ib_\perp \cdot l_\perp} e^{-S_{\text{Sud}}(M, b_\perp)} x_1 G \left(x_1, \frac{c_0}{b_\perp} \right)
\]

BK

DGLAP (CTEQ6M)
Collins-Soper-Sterman (CSS) formalism

\[S_{\text{Sud}}(M, b) = S_{\text{perp}}(M, b_\star) + S_{\text{NP}}(M, b) \]

CSS, NPB250(1985)

\[b_\star = b / \sqrt{1 + (b/b_{\text{max}})^2} \]

small-b: \(b_\star \sim b \)

large-b: \(b_\star \sim b_{\text{max}} = 0.5 \text{ GeV}^{-1} \)

- Perturbative form factor (small-b)
 \[S_{\text{perp}}(M, b) = \int_{c_0/b^2}^{M^2} \frac{d\mu^2}{\mu^2} \left[A \ln \left(\frac{M^2}{\mu^2} \right) + B \right] \]

\[A = \sum_{i=1}^{\infty} A^{(i)} \left(\frac{\alpha_s}{\pi} \right)^i \]

At 1-loop calculation in NRQCD

\[B = \sum_{i=1}^{\infty} B^{(i)} \left(\frac{\alpha_s}{\pi} \right)^i \]

\[A^{(1)} = C_A \quad B^{(1)} = -\left(b_0 + \frac{1}{2} \delta_{8c} \right) N_c \quad b_0 = \left(\frac{11}{6} N_c - \frac{n_f}{3} \right) \frac{1}{N_c} \]

- Non-Perturbative form factor (large-b) ← Determined by the data fitting

\[S_{\text{NP}}(M, b) = \exp \left[\frac{b^2}{2} \left(-g_1 - g_2 \ln \left(\frac{M}{2Q_0} \right) - g_1 g_3 \ln(100x_1x_2) \right) \right] \]
The spectrum of soft gluons emission

$$F_{\text{Sud}}(M, l_\perp) = \int \frac{d^2b_\perp}{(2\pi)^2} e^{-ib_\perp \cdot l_\perp} e^{-S_{\text{Sud}}(M, b_\perp)} x_1 G \left(x_1, \frac{c_0}{b_\perp} \right)$$

- Upsilon production: a large broadening of the distribution is expected.
- Soft gluon emissions carry away pt of the quarkonium about 1–2GeV.
The results are roughly in agreement with the data.

The Sudakov resummation is not applicable at \(p_T > 4,5 \) GeV.

When \(p_T \sim M \), we should switch to the fixed order CGC calculation, which is responsible for the large \(p_T \) region of the spectrum.
We can reproduce the data points very well due to the gluon cascade.

The peak is located at $p_t = 1 \text{ GeV} \rightarrow 3 \text{ GeV}$ (w/ Sudakov).

The Sudakov factor in association with large M gives additional strong broadening of the p_t distributions for Upsilon production.
Predictions of Y(1S) in pPb

The initial condition \(Q_{sA,0}^2 = 3 Q_{s,0}^2 \)

- The Sudakov effect in pA collisions is less pronounced as compared to pp.
- Nuclear modification factor can be modest at low pt.
Summary

- Heavy quark pair production in pA can probe the dense gluon structure.

- We have demonstrated both the small-x resummation and low-pt resummation are essential to understand the LHC data → NLO corrections are not small.

- The effect of the Sudakov factor

<table>
<thead>
<tr>
<th>J/ψ in pp</th>
<th>Y in pp</th>
<th>Y in pPb</th>
</tr>
</thead>
<tbody>
<tr>
<td>△</td>
<td>⚫</td>
<td>△</td>
</tr>
</tbody>
</table>

- The large-pt broadening of quarkonium due to initial soft gluon emission could be seen in the other model such as CGC+NRQCD.