The LHC data at p-Pb collisions (& nPDFs)

Manoel R. Moldes
(on behalf of N. Armesto, H. Paukkunen, J.M. Penín, C. A. Salgado and P. Zurita)

Second Conference on Heavy Ion Collisions in the LHC era and beyond
Quy Nhon, Vietnam, 26-31 July 2015
A short digression on nPDFs

The LHC data from Run I (p-Pb)

The (ongoing) work

Re-weighting

Preliminary results

Summary & outlook
the nuclear medium modifies the partonic behaviour, then A dependent PDFs are needed
NUCLEAR PDFS

- Determined as proton PDFs (global fits)
- Several sets available at NLO with theoretical uncertainties (DSSZ, EPS09, HKN, nCTEQ)
- Mostly DIS data (valence well constrained)
- Limited coverage of the kinematic space
- Sea and gluon densities too assumptions dependent
P-Pb: LHC Run I

- Jets (ATLAS)
- Di-jets (CMS)
- W+, W- (CMS)
- Z (ATLAS, CMS, LHCb)
- Hadro-production (ALICE): dependent on (not well understood) FFs
THE WORK

- **Aim:**
 - analyze the impact of these data on nPDFs
 - determine if a new nPDF fit is required

- **Method:**
 - bayesian re-weighting with two proton (MSTW2008, CT10) and two nuclear (DSSZ, EPS09) PDF sets
 - MCFM & FR (Frixione-Ridolfi)

References

- **MSTW2008:** EPJC 63 (2009) 189
- **CT10:** PRD 82 (2010) 074024
- **DSSZ:** PRD 85 (2012) 074028
- **EPS09:** JHEP 0904 (2009) 065
- **MCFM:**
 - FR : NPB 467 (1996) 399
 - NPB 507 (1997) 295
 - NPB 507 (1997) 315
- given: $f_{S_0}, f_{S_i^+}, f_{S_i^-}$

- generate MC replicas ($k=1, \ldots, N_{\text{rep}} \sim 10^4$)

$$f_k = f_S + \sum_i^{N_{\text{eig}}} \frac{f_{S_i^+} - f_{S_i^-}}{2} R_{ik}$$

represent the underlying probability distribution of the PDFs

$P_{\text{old}}(f)$

random, gaussian
any PDF dependent quantity is

\[
\langle \mathcal{O} \rangle = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \mathcal{O}(f_k)
\]
any PDF dependent quantity is

\[
\langle \mathcal{O} \rangle = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \mathcal{O}(f_k)
\]

- add new data \(\vec{y} \)
- by Bayes’ theorem:

\[
P_{\text{new}}(f) \propto P(\vec{y}|f)P_{\text{old}}(f)
\]

likelihood
then

\[
\langle \mathcal{O} \rangle_{\text{new}} = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \mathcal{O}(f_k) w_k
\]

proportional to the likelihood
then

\[
< \mathcal{O} >_{\text{new}} = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \mathcal{O}(f_k) w_k
\]

proportional to the likelihood

with

\[
w_k = \exp\left(-\frac{\chi_k^2}{2\Delta}\right)
\]

PDF tolerance, needed for statistical correctness

quantitative estimator of data-theory compatibility

\[
N_{\text{eff}} \equiv \exp\left\{\frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} w_k \log(N_{\text{rep}}/w_k)\right\}
\]
RESULTS

- some data are still preliminary
- adequate data selection under discussion
- shown only for CT10 + EPS09
JETS BY ATLAS

JETS BY ATLAS

ATLAS Collaboration,
JETS BY ATLAS

JETS BY ATLAS

ATLAS Collaboration,
JETS BY ATLAS

GLUONS

$Q^2 = 1.69 \text{GeV}^2$
W’S BY CMS

\[W^+ \rightarrow l^+ \nu \]

\[|\eta_{lab}| < 2.4 \]

\[p_T > 25 GeV \]

\[\frac{d\sigma(W^+ \rightarrow l^+ \nu)}{d\eta_{lab}} \text{ [nb]} \]

- MCFM (no reweight.)
- Exp. data
$W' \to l^+ \nu$

$|\eta_{lab}| < 2.4$

$p_T > 25 GeV$

$\frac{d\sigma(W^+ \to l^+ \nu)}{d\eta_{lab}} [nb]$
W’S BY CMS

\[W^- \rightarrow l^- \nu \]
W’s by CMS

$|\eta_{lab}| < 2.4$

$p_T > 20\,\text{GeV}$
$|\eta_{\text{lab}}| < 2.4$

$p_T > 20\text{GeV}$
Z BY ATLAS

ATLAS-CONF-2014-020

CAREFUL! NOT THE LATEST DATA (see T. Balestri’s talk at Hard Probes)

\[\frac{d\sigma}{dy} \]

- **MCFM (no reweight.)**
- **Exp. data**

![Graph showing the distribution of decay rates](image)
CAREFUL! NOT THE LATEST DATA (see T. Balestri’s talk at Hard Probes)
SEA QUARKS $Q^2 = 1.69 GeV^2$
$C_{\text{asymm}} = \frac{N_l^+ - N_l^-}{N_l^+ + N_l^-}$
\[C_{asymm} = \frac{N_l^+ - N_l^-}{N_l^+ + N_l^-} \]

CMS W’s

need of flavour decomposition in nPDFs
ASYMMETRIES

\[FB_{asym} = \frac{N_l(+\eta)}{N_l(-\eta)} \]

predictions show a clear nuclear effect (see A. Zsigmond’s talk in Hard Probes)
SUMMARY

- We analyzed p-Pb data from LHC (~160 points) for EPS09
- Predictions are compatible with data (except ATLAS’ Z, updated data to check): $N_{\text{eff}} \sim 6000$
- For EPS09 the impact seems rather small, except for the gluon density (very unconstrained)
- The trend is a flatter gluon, with less shadowing and anti-shadowing
- Preliminary results do not hint the need for new nPDFs
Incorporate the final ATLAS’ Z data, and LHCb’s Z
Consider charged-particles production from ALICE
Check for (promising) observables, such as asymmetries
Incorporate the final ATLAS’ Z data, and LHCb’s Z

Consider charged-particles production from ALICE

Check for (promising) observables, such as asymmetries

comments and (un) answered questions to:

pia.zurita@usc.es

hannu.t.paukkunen@jyu.fi
& OUTLOOK

- Incorporate the final ATLAS’ Z data, and LHCb’s Z
- Consider charged-particles production from ALICE
- Check for (promising) observables, such as asymmetries

comments and (un) answered questions to:

pia.zurita@usc.es
hannu.t.paukkunen@jyu.fi

(the rest of us are on vacation)