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Jet quenching in the LHC era

2

Pre LHC 

• Evidence: disappearance of 
away peak in two-particle 
correlation 

• Theory: medium-induced 
energy loss from leading 
parton

Today 

• Evidence: suppression of fully 
reconstructed jets, large dijet 
asymmetries,… 

• Theory: medium-modified 
parton showers (?), flow of 
energy away from the jet cone 
(?)
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Medium-induced radiation

Hard parton undergoes multiple scatterings and radiates 
gluons coherently

LPM effect BDMPS-Z Formalism
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BDMPS-Z

• Established a clear relation between energy loss and 
transverse momentum broadening 

• Focuses in purely medium-induced radiation via subtraction 
of vacuum component 

• For a sufficiently long medium one could consider the initial 
hard parton as being on-shell

Baier, Dokshitzer, Mueller, Peigné, Schiff; Zakharov
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From leading parton energy 
loss to jets

• Multiple branchings instead of single gluon emission. Parton 
showers 

• Where does the energy go? 

• No vacuum subtraction 

• What is the role of interferences?

E
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Color coherence

• In vacuum, color coherence 
implies angular ordering in the 
parton shower 

• Interaction with the medium can 
destroy color coherence 
(antenna calculation) 

• Soft emissions at large angles 
are enhanced

Mehtar-Tani, Salgado, Tywoniuk
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• The jet is a coherent object, at each step of the cascade the total color 
charge is conserved: successive branchings are ordered in angles  

• Color coherence: collinear evolution (suppresses large angle soft radiation) 

• Probabilistic picture: Evolution variable  

Q � E �jet

partons hadrons

�jet > �1 > ... > �n

�1

�2

�3

t � ln Q2 � ln �2
jet

�

K

�

�

Q0 � �QCD

[Bassetto, Ciafaloni, Marchesini, Mueller, Dokshitzer, Khoze, Toyan,… 1980’s]

Vacuum cascade
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Medium resolution

There is a transverse scale which determines if the 
medium can resolve the inner structure of a given shower

⇠ 1

Qs Qs ⇠ q̂L

If the medium can’t resolve the inner structure then it evolves in an 
angular-ordered shower while emitting as a single particle (coherent 
limit)

Casalderrey-Solana, Mehtar-Tani, 
Salgado, Tywoniuk
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Main Features of Jet 
Modification

• Suppression by a factor of 2-3 of single jet spectrum in central 
collisions 

• Large dijet and photon-jet asymmetries 

• Azimuthal correlations not (largely) modified 

• Missing momentum is found in tracks of soft particles at large 
angles 

• Fragmentation functions not modified at large energy fractions 
but an excess of soft particles inside the jet is observed
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Multiple emissions

• Antenna calculation as guidance on how to deal with the 
interferences 

• Branching time = Decoherence time 

• In a sufficiently dense and long medium, leading effects 
come from short formation times and emissions can be 
considered as local and independent (total decoherence 
limit) 

• Probabilistic picture
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In-Medium Gluon Branching

t0 tL

ka

kb

p0 q

p

q − p

t

P2(ka,kb, z; tL, t0) = 2g2z(1� z)

Z tL

t0

dtK(z, p+0 ; t)

⇥
Z

q
P(ka � zq; tL, t)P(kb � (1� z)q; tL, t)P(q � p0; t, t0)

Splitting Kernel

Momentum broadening
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Multiple Branchings

• Use a generating functional to resum diagrams

= +
p⊥p⊥p′⊥p⊥p⊥
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z
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t0 tLt

Splittings ordered in time
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One-Gluon Distribution
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Evolution equation:
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Radiative Corrections
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Kernel depends 
on transverse 

momenta 

Liou, Mueller, Wu; Blaizot, Dominguez, Iancu, Mehtar-Tani
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Radiative Corrections

One-gluon distribution
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Radiative Corrections
Expand Kernel momenta Take z ! 1
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Diffusion approximation
Let us consider a highly energetic particle passing through the medium : 
x ~ 1 . The broadening acquired during a single scattering or a branching is small 
compared to the total broadening.  This allows us to expand the distribution D 
for small transverse momentum exchange

D (x,k � l) = D (x,k)� l · �
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Hence, the elastic term, where the quenching parameter appears 
naturally as a diffusion coefficient, yields

l? ⌧ k?

l?

Renormalization of the quenching parameter 
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Why it looks like a local 
correction?

• Singularity at z=1 means main contribution comes from 
emissions with very short branching times 

• Correction comes from interactions with the medium during 
the short lifetime of the fluctuation
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Radiative corrections and universality

24

• Radiative corrections to pt-broadening to Double Log accuracy 

�k2
�� = q̂L
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�0

�

• Radiative corrections to energy loss 
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• Universality and renormalization of  q̂

�

[Wu (2011) Liou, Mueller, Wu (2014) Blaizot, Iancu, Dominguez, MT (2014)]

[Blaizot, MT (2014) Wu (2014)]

[Blaizot, MT (2014) Iancu (2014)]

[F. Dominguez’s talk  Tue and B. Wu’s talk  Wed]
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• Main contribution comes form region of single scattering 

• Double log phase space determined by multiple scattering condition



Energy loss
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• Same can be done for energy loss, though the calculation 
is trickier. 

• Relationship between transverse momentum broadening 
and energy loss is preserved at leading log accuracy 

• Suggests this radiative correction can be considered as 
evolution of the jet quenching parameter



Dilute limit

• Once the multiple scattering barrier has been lifted, one can 
no longer ignore the log dependence in the momentum scale 
in the jet quenching parameter 

• Similar to high transverse momentum tails in saturation 
formalism 

• Branching times no longer constrained and modifications are 
non-local
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Dilute limit - Radiative 
corrections
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Some comments

• Even though a potentially big contribution is found, strictly 
speaking can not be interpreted as a correction to the jet 
quenching parameter 

• As in the dense case, such large contributions come from 
very soft gluons characteristic of medium-induce radiation
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Summary

• New advances in the theory of jet quenching, but still more to 
be done 

• Radiative corrections provide sizable contributions and can 
be considered as a renormalization of the jet quenching 
parameter 

• Extra care must be taken when extending these ideas to 
dilute case and early shower dynamics
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