Radiative Corrections to Jet Quenching in Dense and Dilute Media

Fabio Dominguez Universidade de Santiago de Compostela

Rencontres du Vietnam 2nd Conference on Heavy Ion Collisions in the LHC Era and Beyond

July 30th, 2015

Jet quenching in the LHC era

Pre LHC

- Evidence: disappearance of away peak in two-particle correlation
- Theory: medium-induced energy loss from leading parton

Today

- Evidence: suppression of fully reconstructed jets, large dijet asymmetries,...
- Theory: medium-modified parton showers (?), flow of energy away from the jet cone (?)

Jet quenching in the LHC era

Pre LHC

- Evidence: disappearance of away peak in two-particle correlation
- Theory: medium-induced energy loss from leading parton

Today

- Evidence: suppression of fully reconstructed jets, large dijet asymmetries,...
- Theory: medium-modified parton showers (?), flow of energy away from the jet cone (?)

Jet quenching in the LHC era

Pre LHC

- Evidence: disappearance of away peak in two-particle correlation
- Theory: medium-induced energy loss from leading parton

Today

- Evidence: suppression of fully reconstructed jets, large dijet asymmetries,...
- Theory: medium-modified parton showers (?), flow of energy away from the jet cone (?)

Medium-induced radiation

Hard parton undergoes multiple scatterings and radiates gluons coherently

BDMPS-Z

Baier, Dokshitzer, Mueller, Peigné, Schiff; Zakharov

• Established a clear relation between energy loss and transverse momentum broadening

$$-\frac{dE}{dz} \sim \alpha_s N_c \left\langle p_{\perp}^2 \right\rangle$$

- Focuses in purely medium-induced radiation via subtraction of vacuum component
- For a sufficiently long medium one could consider the initial hard parton as being on-shell

From leading parton energy loss to jets

- Multiple branchings instead of single gluon emission. Parton showers
- Where does the energy go?
- No vacuum subtraction
- What is the role of interferences?

Color coherence

 $\theta_{jet} > \theta_1 > ... > \theta_n$

Mehtar-Tani, Salgado, Tywoniuk

- In vacuum, color coherence implies angular ordering in the parton shower
- Interaction with the medium € Earf^{jet} destroy color coherence (antenna calculation)
- Soft emissions at large angles are enhanced

Color coherence

 $\theta_{jet} > \theta_1 > ... > \theta_n$

Mehtar-Tani, Salgado, Tywoniuk

- In vacuum, color coherence implies angular ordering in the parton shower
- Interaction with the medium € and jet destroy color coherence (antenna calculation)
- Soft emissions at large angles are enhanced

Medium resolution

There is a transverse scale which determines if the medium can resolve the inner structure of a given shower

$$- \frac{1}{Q_s}$$

Casalderrey-Solana, Mehtar-Tani, Salgado, Tywoniuk

 $Q_s \sim \hat{q}L$

If the medium can't resolve the inner structure then it evolves in an angular-ordered shower while emitting as a single particle (coherent limit)

Main Features of Jet Modification

- Suppression by a factor of 2-3 of single jet spectrum in central collisions
- Large dijet and photon-jet asymmetries
- Azimuthal correlations not (largely) modified
- Missing momentum is found in tracks of soft particles at large angles
- Fragmentation functions not modified at large energy fractions but an excess of soft particles inside the jet is observed

Multiple emissions

- Antenna calculation as guidance on how to deal with the interferences
- Branching time = Decoherence time
- In a sufficiently dense and long medium, leading effects come from short formation times and emissions can be considered as local and independent (total decoherence limit)
- Probabilistic picture

In-Medium Gluon Branching

Momentum broadening

Multiple Branchings

• Use a generating functional to resum diagrams

Splittings ordered in time

One-Gluon Distribution

$$D(x, \boldsymbol{k}, t) = k^{+} \frac{dN}{dk^{+} d^{2} \boldsymbol{k}}$$

Evolution equation:

$$\frac{\partial}{\partial t}D(x, \boldsymbol{k}, t) = \int_{l} \mathcal{C}(\boldsymbol{l}, t)D(x, \boldsymbol{k} - \boldsymbol{l}, t) + \alpha_{s} \int_{0}^{1} dz \left[\frac{2}{z^{2}}\mathcal{K}\left(z, \frac{x}{z}p_{0}^{+}; t\right)D\left(\frac{x}{z}, \frac{\boldsymbol{k}}{z}, t\right) - \mathcal{K}\left(z, xp_{0}^{+}; t\right)D(x, \boldsymbol{k}, t)\right]$$

Radiative Corrections

Kernel depends on transverse momenta

$$\mathcal{P}_{2}(\boldsymbol{k}_{a}, \boldsymbol{k}_{b}, z; t_{L}, t_{0}) = 2g^{2}z(1-z)\int_{t_{0}}^{t_{L}} dt \int_{\boldsymbol{q}, \boldsymbol{Q}, \boldsymbol{l}} \mathcal{K}(\boldsymbol{Q}, \boldsymbol{l}, z, p_{0}^{+}; t)$$

$$\times \mathcal{P}(\boldsymbol{k}_{a} - \boldsymbol{p}; t_{L}, t) \mathcal{P}(\boldsymbol{k}_{b} - (\boldsymbol{q} + \boldsymbol{l} - \boldsymbol{p}); t_{L}, t) \mathcal{P}(\boldsymbol{q}; t, t_{0})$$
Liou, Mueller, Wu; Blaizot, Dominguez, lancu, Mehtar-Tan

Radiative Corrections

One-gluon distribution

$$\frac{\partial}{\partial t_L} D(x, \boldsymbol{k}, t_L) = \alpha_s \int_0^1 dz \int_{\boldsymbol{Q}, \boldsymbol{l}} \left[\frac{2}{z^2} \mathcal{K} \left(\boldsymbol{Q}, \boldsymbol{l}, z, \frac{x}{z} p_0^+ \right) D \left(\frac{x}{z}, (\boldsymbol{k} - \boldsymbol{Q} - z\boldsymbol{l})/z, t_L \right) - \mathcal{K} \left(\boldsymbol{Q}, \boldsymbol{l}, z, x p_0^+ \right) D \left(x, \boldsymbol{k} - \boldsymbol{l}, t_L \right) \right] - \int_{\boldsymbol{l}} \mathcal{C}(l) D \left(x, \boldsymbol{k} - \boldsymbol{l}, t_L \right)$$

Richer momentum structure

Radiative Corrections

Expand Kernel momenta

Take $z \rightarrow 1$

Why it looks like a local correction?

- Singularity at z=1 means main contribution comes from emissions with very short branching times
- Correction comes from interactions with the medium during the short lifetime of the fluctuation

Double log

- Main contribution comes form region of single scattering
- Double log phase space determined by multiple scattering condition

Energy loss

- Same can be done for energy loss, though the calculation is trickier.
- Relationship between transverse momentum broadening and energy loss is preserved at leading log accuracy
- Suggests this radiative correction can be considered as evolution of the jet quenching parameter

 $\frac{L}{\tau_0}$

Dilute limit

- Once the multiple scattering barrier has been lifted, one can no longer ignore the log dependence in the momentum scale in the jet quenching parameter
- Similar to high transverse momentum tails in saturation formalism
- Branching times no longer constrained and modifications are non-local

Dilute limit - Radiative corrections

$$\delta \left\langle \Delta \boldsymbol{p}^2 \right\rangle = \frac{\alpha_s N_c}{\pi} L \int_{\tau_0}^{\tau_{max}} \frac{d\tau}{\tau} \int^{\boldsymbol{k}^2} \frac{d\boldsymbol{q}^2}{\boldsymbol{q}^2} \hat{q}(\boldsymbol{q}^2)$$

Lower limit in momentum integration given by Debye mass

Some comments

- Even though a potentially big contribution is found, strictly speaking can not be interpreted as a correction to the jet quenching parameter
- As in the dense case, such large contributions come from very soft gluons characteristic of medium-induce radiation

Summary

- New advances in the theory of jet quenching, but still more to be done
- Radiative corrections provide sizable contributions and can be considered as a renormalization of the jet quenching parameter
- Extra care must be taken when extending these ideas to dilute case and early shower dynamics