W-boson production measurement with ALICE in p–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

Kgotlaesele Johnson Senosi

for the ALICE Collaboration July 28, 2015

II Heavy Ion Collisions in the LHC era and Beyond (July 26 - August 01)

Outline

 \checkmark Introduction

✓ ALICE setup

 \checkmark Data samples

√ Analysis strategy

✓ Results

√ Summary

- W bosons are electroweak particles produced in initial hard interactions
- Quark-antiquark annihilation is the dominant production mechanism

 $u\bar{d} \rightarrow W^+$ $d\bar{u} \rightarrow W^-$

- In proton-proton collisions \Rightarrow access to valence quark parton distribution functions (PDFs)

In heavy-ion collisions (p-Pb and PbPb):

- Sensitive to nuclear PDFs (modification of PDFs inside the nucleus)
- Test the binary scaling of hard processes

- W bosons are electroweak particles produced in initial hard interactions
- Quark-antiquark annihilation is the dominant production mechanism

 $u\bar{d} \rightarrow W^+$ $d\bar{u} \rightarrow W^-$

• In proton-proton collisions \Rightarrow access to valence quark parton distribution functions (PDFs)

In heavy-ion collisions (p-Pb and PbPb):

- Sensitive to nuclear PDFs (modification of PDFs inside the nucleus)
- Test the binary scaling of hard processes
- Good probe to access shadowing and anti-shadowing

NNPDF2.3 Dataset

Nucl. Phys. B 867 (2013) 243

- W bosons are electroweak particles produced in initial hard interactions
- Quark-antiquark annihilation is the dominant production mechanism

 $u\bar{d} \rightarrow W^+$ $d\bar{u} \rightarrow W^-$

- In proton-proton collisions \Rightarrow access to valence quark parton distribution functions (PDFs)

In heavy-ion collisions (p–Pb and PbPb):

- Sensitive to nuclear PDFs (modification of PDFs inside the nucleus)
- Test the binary scaling of hard processes
- Good probe to access shadowing and anti-shadowing
- Not sensitive to strong interaction
 ⇒ reference for
 medium-induced effects

- Measured in semi-muonic decay \Rightarrow final state is not affected by the hot and dense QCD medium

- Signal is a Jacobean peak in the single muon ρ_T -differential distribution with maximum at $\rho_T \sim M_W/2$
- Dominant contribution above $p_T \sim 30 \text{ GeV}/c$ with main background from Z/γ^* and muons from heavy-flavour hadron decays Z. Conesa del Valle, Eur. Phys. J.C(2007)149

ALICE Setup

Muon reconstruction

- Reconstructed within the pseudorapidity acceptance $-4.0 < \eta_{lab} < -2.5$
- Minimum $p_{\rm T}$ trigger is 0.5 GeV/c with a minimum momentum (p) threshold of 4 GeV/c
- Muon track selection in addition to geometrical acceptance cuts:
 - --- offline matching of the tracking and trigger tracks to reduce background from punch-through hadrons
 - \multimap correlation of momentum (p) and Distance of Closest Approach (DCA) to the interaction point to reduce fake and beam gas tracks

Event activity determination

Estimators:

- VZEROs (V0A and V0C) cover the pseudorapidity acceptance 2.8 $<\eta_{lab}<$ 5.1 and $-3.7<\eta_{lab}<-1.7,$ respectively
- The 2nd layer of the SPD (CL1 estimator): $|\eta_{
 m lab}| <$ 1.4 coverage
- ZNA and ZNC placed $\pm 112.5\,\text{m}$ from the interaction point along the beam pipe

Data Samples

- p-Pb collisions at $\sqrt{\textit{s}_{NN}}$ = 5.02 TeV (E $_p = 4$ TeV & E $_{Pb} = 1.58$ TeV)
- Two beam configurations with a rapidity shift ($\Delta y = 0.465$) in the proton direction p-going (forward rapidity, y_{cms}) Pb-going (backward rapidity, -y_{cms})

 \Rightarrow y_{cms} covered by the muon spectrometer

- Trigger: high-p_T muon triggered events (Minimum-Bias (MB,coincidence of VOA and VOC) & muon with p_T \gtrsim 4 GeV/c)

Integrated Luminosity

Forward: 4.9 nb^{-1} Backward: 5.8 nb^{-1}

Signal extraction

Signal extraction based on a combined fit $f(p_T)$:

 $f(p_{T}) = N_{\mu \leftarrow HF} \cdot f_{\mu \leftarrow HF} + N_{\mu \leftarrow W} \cdot f_{\mu \leftarrow W} + N_{\mu \leftarrow Z/\gamma^{*}} f_{\mu \leftarrow Z/\gamma^{*}}$ = FONLL based template and phenomenological functions $f_{\mu \leftarrow HF}$ $f_{\mu \leftarrow W}, f_{\mu \leftarrow Z/\gamma^*} = POWHEG$ based Monte Carlo (MC) templates = free normalization parameters $N_{\mu \leftarrow HF}, N_{\mu \leftarrow W}$ = fixed to $N_{\mu \leftarrow W}$, using ratios of cross-sections from MC $\frac{\sigma_{\mu \leftarrow Z/\gamma^*}}{\sigma_{\mu \leftarrow W}}$ $\mathbb{N}_{\mu \leftarrow Z/\gamma^*}$ $dN^{\mu^{+}}/dp_{T}$ (GeV/c)⁻¹ N_{...+}=400.4±22.7 - + data $N_{\mu \leftarrow W}$ is extracted between 10 and 80 GeV/c u⁺←W⁺ γ²/ndf=87.77/66 and corrected for acceptance×efficiency Fit Range: $12 < p_{\tau}^{\mu^{+}} < 80 \text{ GeV}/c$ (obtained from simulation) FONLL 2.03<y^{µ*}_{cms}<3.53 p-Pb √s_{NN}=5.02 TeV ALICE Preliminary See a constraint Normalize the yield to MB cross section to obtain $\sigma_{\mu^{\pm} \rightarrow W^{\pm}}$ data - fit)/fit 0.5 hand p_(GeV/c)

Kgotlaesele Johnson Senosi

W-boson production

8 / 16

Analysis Strategy

W and Z/γ^* Monte Carlo (MC) templates

- Based on POWHEG (NLO) generator with CTEQ6m
- Interfaced with PYTHIA6.4:
 - \Rightarrow apply showers to POWHEG hard events
 - \Rightarrow parametrize nPDFs using EPS09

POWHEG: JHEP 0807(2008)060, CTEQ: JHEP 0207(2002)012, PYTHIA6.4: JHEP 05(2006)026, EPS09: JHEP 0904(2009)065 Generation done for pp and pn separately and combined with:

$$\frac{1}{N_{\rm pPb}}\frac{\mathrm{d}N_{\rm pPb}}{\mathrm{d}\rho_{\rm T}} = \frac{Z}{A}\frac{1}{N_{\rm pp}}\frac{\mathrm{d}N_{\rm pp}}{\mathrm{d}\rho_{\rm T}} + \frac{A-Z}{A}\frac{1}{N_{\rm pn}}\frac{\mathrm{d}N_{\rm pn}}{\mathrm{d}\rho_{\rm T}}$$

A = 208 and Z = 82

Heavy-flavour Monte Carlo (MC) templates

- Based on Fixed Order Next-to-Leading-Log (FONLL) with CTEQ6.6
- Muons from B and D decays in pp at $\sqrt{s} = 5.02$ TeV (FONLL) \Rightarrow used for heavy-flavour semi-muonic decays description
- Phenomenological function previously used by ATLAS

FONLL: JHEP 1210(2012)137, ATLAS: ATLAS-COM-CONF-2011-088

Computing the cross section

• Cross section is computed as follows:

$$\sigma_{\mu \leftarrow W} = \frac{N_{\mu \leftarrow W}}{A \times \epsilon} \times \frac{1}{L_{\text{int}}}$$

where $L_{\rm int}$ is

and $A \times \epsilon$ is the acceptance and efficiency factor:

 \Rightarrow Forward rapidity: 0.88 and Backward rapidity: 0.77 \Leftarrow

- *N*_{MB} is the number of minimum-bias events
- $N_{
 m MSH}$ is the number of high $p_{
 m T}$ triggered muon events
- $F_{\rm norm}$ computed with two methods is the number of minimum-bias events per $N_{\rm MSH}$
 - ⇒ Online and offline information takes into account pile-up
- The inelastic cross section were evaluated independently using van der Meer scans $\Rightarrow \sigma_{\rm MB}$ is 2.09 \pm 0.07 b and 2.12 \pm 0.06 b for the p–Pb and Pb–p data samples respectively JINST 9 (2014) 11, P11003

Systematic Uncertainties

 $N_{\mu \leftarrow W}$ is a weighted average of several trials varying:

- $\circ p_{\rm T}$ fit range, description of heavy-flavour decay muons
- $\circ~$ Fraction of muons from Z to W cross sections were obtained with PYTHIA and POWHEG
- $\circ~$ Alignment \rightarrow variation of positions of detector elements

Systematics	
Signal extraction	
(includes alignment, fit stability/shape,	from \sim 6% to \sim 10%
etc.)	
Acc.×Eff.	
– track./trig. efficiencies	2.5%
– alignment	< 1 %
Pile-up	0 – 7.5%
Normalisation to MB	
- F _{norm}	1%
$-\sigma_{\rm MB}$	3.2% (forward) 3% (backward)

- Cross section of muons from W^\pm measured at forward and backward rapidity
- Isospin effects more visible at backward rapidity

W-boson production

Theory: Theory: Alioli, Nason, Oleari and Re. JHEP 0807 (2008) 060

- Cross section of muons from W^\pm measured at forward and backward rapidity compared with POWHEG Next-to-Leading order calculation
 - shadowing not taken into account in the theory

Theory: Hannu Paukkunen, pQCD NLO with CT10

- Cross section of muons from W^\pm measured at forward and backward rapidity compared with pQCD calculation without shadowing

Theory: Hannu Paukkunen: pQCD with CT10 and EPS09

- Cross section of muons from W^\pm measured at forward and backward rapidity compared with pQCD calculation with shadowing

Test of binary scaling

- Production of W bosons is a hard process thus is expected to scale with the number of collisions ($\langle N_{\rm coll} \rangle$)
- (N_{coll}) is expected to be correlated with event activity (central, semi-central, peripheral)
- Different estimators with different approaches were used to classify event activity:
 - Glauber Model + Negative Binomial Distribution fit to the signal in the V0A or V0C and the clusters in the first layer of the SPD (CL1)
 - Hybrid method: scaling N_{coll} in minimum-bias collisions by the ratio between the average multiplicity density measured at mid-rapidity in a given ZDC energy event class and the one measured in minimum bias collisions (ZNA and ZNC)

• $\langle N_{coll} \rangle$ systematic uncertainty is multiplicity bin dependent, varies between 8 - 24%

Yield over $\langle N_{\rm coll} \rangle$

- Signal extraction done separately for $\mu^+ \leftarrow \mathrm{W}^+$ and $\mu^- \leftarrow \mathrm{W}^-$ and then combined
- Yield is normalized to $\langle N_{\rm coll} \rangle$ to test binary scaling
- The yield per binary collisions is independent of event activity within uncertainties
- Yield normalized to $\langle N_{coll} \rangle$ compatible within uncertainties among estimators

Summary

- Production of W bosons has been measured at forward and backward rapidity
- Cross section
 - Isospin effects more prominent at backward rapidity ($\sigma_{\mu^-\leftarrow W^-} > \sigma_{\mu^+\leftarrow W^+}$)
 - pQCD calculations with and without nuclear PDFs describe the measurements (same observation as CMS in a complementary rapidity region)
 ⇒ Predictions with nPDFs seem closer to data
- Yield normalized to $\langle N_{\rm coll} \rangle$
 - Measurements performed with different estimators are consistent between one another
 - Production of W-boson scales with $\langle N_{\rm coll} \rangle$ with uncertainties

Backup

Glauber+NBD

- Glauber MC to obtain $P(N_{part})$ assuming N_{part} = number of particle sources ancestors
- multiplicity distribution per ancestor from Negative Binomial Distribution (NBD)
- minimization procedure to find NBD parameter values
- centrality classes defined slicing measured multiplicity distributions in percentiles of cross section

ALICE, Phys. Rev. C88, 044909 (2013)

Hybrid

- Similar procedure but coupled with a model for slow nucleon emission (SNM) No model is currently available for LHC energies
- Features of emitted nucleons weakly dependent on projectile energy from 1 GeV to 1 TeV
- "Phenomenological" model based on experimental results at lower energies

F. Sikler, arXiv: 0304.065

Systematics on the signal extraction

 $\overline{O(N_{\mu \leftarrow W})}$ is extracted from a large number of fit trials, varying:

- The p_{T} range where the fit is performed
- QCD or Heavy-flavour decay muons background description
- Fraction of Z/ γ^* to W $^\pm$ muons: \Rightarrow obtained using PYTHIA and POWHEG
- Alignment effects \Rightarrow vary the position of detector elements
- Weighted average over
 - (3 background description)×(different p_T ranges)×(2 $N_{\mu \leftarrow Z/\gamma^*}/N_{\mu \leftarrow W})$ ×(2 alignment configurations)×(1 MC templates for the signal) trials:

$$<\mathbf{N}_{\mu\leftarrow\mathbf{W}}>=\frac{\sum\limits_{\mathrm{i}=1}^{\mathrm{n}}\mathbf{w}_{\mathrm{i}}\mathbf{N}_{\mu\leftarrow\mathbf{W},\mathrm{i}}}{\sum\limits_{\mathrm{i}=1}^{\mathrm{n}}\mathbf{w}_{\mathrm{i}}}\qquad\qquad\mathbf{w}_{\mathrm{i}}=\frac{1}{(\frac{\sigma_{\mu\leftarrow\mathbf{W}}}{\sqrt{\mathbf{N}_{\mu\leftarrow\mathbf{W}}}})^{2}}$$

where $\sigma_{\mu \leftarrow \mathrm{W}}$ is the statistical uncertainty per trial

• the statistical error is given by propagating the error on each trial

$$\delta_{<\mathbb{N}_{\mu\leftarrow\mathbf{W}>}}^{\texttt{stat}}=\frac{\sqrt{\sum_{\texttt{i}=1}^{n}(\texttt{w}_{\texttt{i}}\sigma_{\mu\leftarrow\mathbf{W},\texttt{i}})^{2}}}{\sum_{\texttt{i}=1}^{n}\texttt{w}_{\texttt{i}}}\cdot\sqrt{n}$$

- systematic error is estimated assuming $\mathbf{N}_{\mu \leftarrow \mathbf{W}}$ is extracted from a uniform distribution

$$\delta_{<\mathrm{N}_{\mu\leftarrow W}>}^{\mathrm{syst}} = \frac{\mathrm{N}_{\mu\leftarrow W}(\max.) - \mathrm{N}_{\mu\leftarrow W}(\min.)}{\sqrt{12}}$$