Content:

- Introduction

- QCD Perturbation Theory
 - BPT, DRQCD, HTLpt

- Pressure of Hot and Dense matter (QGP)
 - PQCD/HTL Resummed PT Vs. LQCD

- Other Relevant Thermodynamic Quantities of QGP
 - HTL Resummed PT Vs. LQCD

- Conclusion
Present-day understanding of the QCD phase diagram

- Theory (QCD and models)
- Numerical Experiments (LQCD)
- Mini Bang (Laboratory Expt.)

Complex: Difficult to span the whole PD by a single effort!
Present-day understanding of the QCD phase diagram

- Higher the collision energy the closer is the created system located near temperature axis
- A crossover at RHIC and LHC; No true phase transition; LQCD also exhibited.
- Preliminary to attribute a definite position for critical point in phase diagram (BES-I at RHIC and LQCD)
- Data appear to demand an explanation beyond a purely hadronic scenario ⇒ non-hadronic source (partonic degrees)
- Collective behaviours ⇒ Circumstantial evidences

- Theory (QCD and models)
- Numerical Experiments (LQCD)
- Mini Bang (Laboratory Expt.)

Complex: Difficult to span the whole PD by a single effort!
Existing Theoretical Approaches

- All regions of the PD by the first principle QCD calculations!
- Not yet!
- Interface of Nuclear Physics and Particle Physics
Interface of particle physics & high-energy nuclear physics

- Draws heavily from QCD: perturbative and non-perturbative

- Overlaps with:
 - Thermal Field Theory
 - Relativistic Fluid Dynamics
 - Kinetic or Transport Theory
 - Quantum Collision Theory
 - String Theory
 - Statistical Mechanics & Thermodynamics
Present Talk

- Perturbative Thermal QCD to study EOS and Thermodynamics of Hot and Dense Matter

- Precise knowledge of equation of state (pressure) of QCD matter at high density and temperature has important significance for the analysis of HIC experiments.
Perturbative QCD (weak coupling expansion) Domain:

The region we would eventually like to describe with pQCD
Perturbative QCD: Domain of Present Talk

The region I will focus on today

Quark Gluon Plasma

Hadron Gas

Vacuum

Nuclear Matter

Quark Matter

Color Superconductor

$T \ [\text{MeV}]$

$\mu_B \ [\text{MeV}]$
Perturbative QCD (weak coupling expansion):

- At high temp. and/or high density matter is simple!!
- QCD interactions weaken at high energy
- Simplicity to emerge in extreme (asymptotic) situations

Any quantity ➔ By expanding in α_s around free theory

Both Static + Dynamic quantities
Perturbative QCD at high temp

Scale separation at high temperature $T \gg$ any intrinsic mass scale and $g < 1$

Hard Scale:
- Thermal fluctuations: Momenta $\sim T$; Length $\sim 1/T$;
- Purely perturbative contribution to QCD thermodynamics (g^{2n})

Soft (Electric Scale):
- Static chromoelectric fluctuations: Momenta $\sim gT$; Length $\sim 1/gT$;
- Debye screening mass of A_0
- Resummation of an infinite subset of diagrams
- Odd powers of g and log creep in (viz., g, g^2, g^3, $g^4\log$, \ldots)

Ultra-soft (Magnetic Scale):
- Static chromomagnetic fluctuations: Momenta $\sim g^2T$; Length $\sim 1/g^2T$;
- Magnetic mass
- Generates non-perturbative contribution to pressure starting at 4-loop order (Linde Problem)
Existing Approach at high T & μ

- Bare Perturbation Theory (BPT)
 - Hard Scale; contribution (g^{2n})
 - BPT breaks down due to Infrared divergence!
 - Requires separation of scales

- Possible Works Around:
 - Dimensional Reduction (DR): An effective theory
 - Resummation: An effective theory
Dimensional Reduction: An Effective Theory

Dimensional Reduction:

- Separation of scales: T (Hard), gT (Elec. Screen.), g^2T (Mag. Screen.)
- Except zero bosonic mode ($n = 0$) all other d.o.fs get large effective mass
 \[\omega_n^b = 2n\pi T; \quad \omega_n^f = (2n + 1)\pi T\]
- Integrate out non-static massive modes ($n \neq 0$) and zero static mode ($n = 0$) remains intact
- A 3-dim effective theory of static electric modes
 \[P_{QCD} = \text{Hard} + \text{Soft} + \text{Ultra-soft} = P_E + P_M + P_G\]

Requires Matching:

- P_E and its coeffs: involves scale T and obtained in BPT thru 1PI diagrams
 \[\sim g^2(2\pi T)\]
- P_M and its coeffs: involves scale gT and obtained as $(gT)^3$ and higher order
- P_G: involves scale g^2T obtained by fitting LQCD data ($\sim g^6$)
Exsisting PQCD/DR Results at high $T \& \mu$

\[\frac{P}{P_{SB}} = 1 \]
\[+ \ g^2 \quad \text{1-loop (Shuryak 78, Chin 78)} \]
\[+ \ g^3 \quad \text{2-loop (Kapusta 79)} \]
\[+ \ g^4 \ln(1/g) \quad \text{2-loop (Toimela 83)} \]
\[+ \ g^4 \quad \text{3-loop (Arnold, Zhai 94)} \]
\[+ \ g^5 \quad \text{3-loop (Zhai, Kastening 95)} \]
\[+ \ g^6 \ln(1/g) \quad \text{3-loop (Kajantie et al. 03; Vourinen 03)} \]
\[+ \ g^6 \quad \text{not perturbatively computable (Linde 80)} \]
\[+ \ g^7 \]
\[+ \ \ldots \]

Efforts took 25 years (1978-2003)
Exsisting PQCD/DR Results at high T & μ

\[P/P_{SB} = 1 \]

Stefan-Boltzmann ideal gas

+ g^2 1-loop (Shuryak 78, Chin 78)

+ g^3 2-loop (Kapusta 79)

+ $g^4 \ln(1/g)$ 2-loop (Toimela 83)

+ g^4 3-loop (Arnold, Zhai 94)

+ g^5 3-loop (Zhai, Kastening 95)

+ $g^6 \ln(1/g)$ 3-loop (Kajantie et al. 03; Vourinen 03)

+ g^7 + \cdots

Efforts took 25 years (1978-2003)
Exsisting PQCD/DR Results at high T & μ

$$\frac{P}{P_{SB}} = \left[1 + g^2 + g^3 + g^4 \ln(1/g) + g^4 + g^5 + g^6 \ln(1/g) + g^6 + \cdots \right]$$

- IR Divergence at $\sim g^3$: Bare PT breaks down
- At $T & \mu > 0$; $\int d^4K \rightarrow T \sum_{k_0} \int d^3k$; Matsubara Mode:
 $$\omega_n^f = (2n + 1)\pi T - i\mu; \quad \omega_n^b = 2n\pi T$$
- Quark’s are harmless: lowest Matsubara mode $\omega_n^f = \pi T$; $n_F(k) \rightarrow \frac{1}{2}$ as $k \rightarrow 0$
- Gluons are IR sensitive: lowest Matsubara mode: $\omega_n^b = 0$; $n_B(k) \sim T/k \rightarrow \infty$ as $k \rightarrow 0$
- $\omega_n^b = 2\pi nT$; $n = 0$, $\omega_n = 0$; zero bosonic mode can propagate over distance $\gg 1/T$
Message from weak coupling expansion PQCD/DR

- Severe convergence problem spoils pert. exp. due to infrared problem [not specific to QCD; exists in QED and scalar theories]

- Observable sensitive to infrared problem at $T \& \mu \neq 0$ in PQCD

- g^6-coefficient is tuned to fit LQCD data \Rightarrow pressure at all T (DR)

- Band for a given α_s order is very wide for the scale (πT to $4\pi T$).

Aim:

- A more convergent gauge-invariant scheme for $T > 2T_c$
- A framework that should describe dynamical properties of the QGP
- Improvement \Rightarrow HTL resummation
HTL perturbation Theory (HTLpt):

- **Assumption:** $T \gg$ any intrinsic mass scale of the theory and $g < 1$

- **Typical momenta of a particle in a heat bath** $\sim T$ (hard scale)

- **Due to interaction massless particles acquire mass** $\sim gT$ (soft scale)

- **Scales are well separated in weak coupling** ($T \gg gT$)

- **Observation:** There are thermal corrections from all orders of PT;
 \[\text{Thermal Corr.} = g^2 T^2 \frac{P^2}{P^2} \times \text{Tree Level}\]

- **Lesson:** Corrections to be taken into account if a physical quantity is sensitive to the soft scale ($\sim gT$)

- **Resum:** HTL N-point fns. in geom. series; satisfy Ward identity; replace those in bare-PT \Rightarrow reorganisation of BPT
Hard Thermal Loop Action [Andersen Braaten and Strickland, 99 → 02]

- Can express an infinite number of HTL-dressed n-point functions concisely in terms of an HTL effective action, \mathcal{L}_{HTL}.
- Expanding \mathcal{L}_{HTL} to quadratic order in A gives dressed propagator (2-point function).
- Expanding to cubic order in A gives the dressed gluon three-vertex.
- Expanding to quartic order in A gives dressed gluon four-vertex.
- And so on... contains an infinite number of higher order vertices which all exactly satisfy the appropriate Slavnov-Taylor identities.

\[
\mathcal{L} = (\mathcal{L}_{QCD} + \mathcal{L}_{HTL}) \mid_{g_s \to \sqrt{\delta} g_s} + \Delta \mathcal{L}_{HTL}
\]

[Andersen, Braaten, and MS, 99 → 02]

\[
\mathcal{L}_{QCD} = -\frac{1}{2} \text{Tr} \left[G_{\mu\nu} G^{\mu\nu} \right] + i \bar{\psi} \gamma^\mu D_\mu \psi + \mathcal{L}_{gf} + \mathcal{L}_{gh} + \Delta \mathcal{L}_{QCD}.
\]

\[
\mathcal{L}_{HTL} = -\frac{1}{2} (1 - \delta) m_D^2 \text{Tr} \left(G_{\mu\alpha} \left\langle \frac{y^\alpha y^\beta}{(y \cdot D)^2} \right\rangle_y G_{\mu\beta} \right)
+ (1 - \delta) i m_q^2 \bar{\psi} \gamma^\mu \left\langle \frac{y_\mu}{y \cdot D} \right\rangle_y \psi,
\]

nth order loop expansion in HTLpt $= \delta^{n-1}$ expansion in the partition function; then $\delta \to 1$
Leading Order (LO) ➤ (One Loop)
Next-To-Leading Order (NLO) ➤ (Two Loop)
Message from NLO HTLpt (2-loop)

- Resummation causes overcounting: unlike pQCD, loop and coupling expansion in HTLpt are not symmetrical ➤ higher loops contribute to the lower loop order
- NLO (2-loop) calculation corrects the overcounting in LO (1-loop)
- NLO (2-loop) pressure obtained here is nominally accurate in g^5 at low T and no $g^6 \ln g$ in comparison to pQCD
- A NNLO (3-loop) calculation in HTLpt is essential to cure overcounting and convergence problems in NLO
Three Loop HTLpt: NNLO calculation of $P(T, \mu)$

Total 49 diagrams to compute in 3-loop

Various Insertions:

One-Loop running $\alpha_s(1.5\text{GeV}) = 0.326$ [Bazavov et al]

Mass Prescription (Braaten-Nieto):

$$\hat{m}_D^2 = \frac{\alpha_s}{3\pi} \left[c_A + \frac{c_A^2 \alpha_s}{12\pi} \left(5 + 22\gamma_E + 22 \ln \frac{\Lambda_q}{2} \right) + s_F \left(1 + 12\mu^2 \right) + \frac{c_A s_F \alpha_s}{12\pi} \left(9 + 132\mu^2 \right) + 22 \left(1 + 12\mu^2 \right) \gamma_E \right]$$

$$+ 2 \left[7 + 132\mu^2 \right] \ln \frac{\Lambda_q}{2} + 4 \eta(z) \left[7 + 132\mu^2 \right] \ln \frac{\Lambda_q}{2} + 4 \eta(z) \left(1 - 2 \ln \frac{\Lambda_q}{2} + \eta(z) \right) - \frac{3}{2} \frac{s_2 F \alpha_s}{\pi} \left(1 + 12\mu^2 \right)$$
\[P_{\text{NNLO}} = \frac{d_A \pi^2 T^4}{45} \left[1 + \frac{7}{4} \frac{dF}{d_A} \left(1 + \frac{120}{7} \mu^2 + \frac{240}{7} \hat{\mu}^4 \right) - \frac{15}{4} \hat{m}_D^3 - \frac{s F \alpha_s}{\pi} \left[\frac{5}{8} \left(5 + 72 \tilde{\mu}^2 + 144 \hat{\mu}^4 \right) \right. \right. \]

\[+ 90 \hat{m}_q \hat{m}_D - \frac{15}{2} \left(1 + 12 \tilde{\mu}^2 \right) \hat{m}_D - \frac{15}{2} \left(2 \ln \frac{\Lambda}{2} - 1 - \mathcal{R}(z) \right) \hat{m}_D^3 \left. \right] + s_2 F \left(\frac{\alpha_s}{\pi} \right)^2 \left[- \frac{45}{2} \hat{m}_D \left(1 + 12 \tilde{\mu}^2 \right) \right. \]

\[+ \frac{15}{64} \left\{ 35 - 32 \left(1 - 12 \tilde{\mu}^2 \right) \frac{\zeta'(1)}{\zeta(-1)} \right\} + 472 \tilde{\mu}^2 + 1328 \hat{\mu}^4 + 64 \left(6(1 + 8 \tilde{\mu}^2) \mathcal{R}(1, z) + 3i \hat{\mu}(1 + 4 \hat{\mu}^2) \mathcal{R}(0, z) - 36i \hat{\mu} \mathcal{R}(2, z) \right) \]

\[+ 8 \mathcal{R}(3, z) - 12 \tilde{\mu}^2 \mathcal{R}(1, 2z) - 2(1 + 8 \tilde{\mu}^2) \mathcal{R}(1, z) + 12i \hat{\mu} \left(\mathcal{R}(2, z) + \mathcal{R}(2, 2z) \right) - i \hat{\mu}(1 + 12 \hat{\mu}^2) \mathcal{R}(0, z) \]
\[\mathcal{P}_{\text{NNLO}} = \frac{d_A \pi^2 T^4}{45} \left[1 + \frac{7}{4} \frac{dF}{d_A} \left(1 + \frac{120}{7} \hat{\mu}^2 + \frac{240}{7} \hat{\mu}^4 \right) - \frac{15}{4} \hat{m}_D^3 - \frac{s_F \alpha_s}{\pi} \left[\frac{5}{8} (5 + 72 \hat{\mu}^2 + 144 \hat{\mu}^4) \right. \right. \\
+ 90 \hat{m}_q^2 \hat{m}_D - \frac{15}{2} \left(1 + 12 \hat{\mu}^2 \right) \hat{m}_D - \frac{15}{2} \left(2 \ln \frac{\hat{\Lambda}}{2} - 1 - \aleph(z) \right) \hat{m}_D^3 \right] + s_2 F \left(\frac{\alpha_s}{\pi} \right)^2 \left[- \frac{45}{2} \hat{m}_D \left(1 + 12 \hat{\mu}^2 \right) \right. \\
+ \frac{15}{64} \left\{ \frac{35 - 32}{12} \left(1 - 12 \hat{\mu}^2 \right) \frac{\zeta'(1-1)}{\zeta(-1)} + 472 \hat{\mu}^2 + 1328 \hat{\mu}^4 + 64 \left(6(1 + 8 \hat{\mu}^2) \aleph(1, z) + 3i \hat{\mu}(1 + 4 \hat{\mu}^2) \aleph(0, z) \right) \right. \\
- 36i \hat{\mu} \aleph(2, z) \right\} \left. \right] + \left(\frac{s_F \alpha_s}{\pi} \right)^2 \left\{ \frac{1}{20} \left(1 + 168 \hat{\mu}^2 + 2064 \hat{\mu}^4 \right) \right. \\
+ \left. \left(\frac{38680}{319} \hat{\mu}^4 \right) - \frac{268}{235} \frac{\zeta'(1-3)}{\zeta(-1)} \right. \\
+ \left. 12 \hat{\mu}^2 \right) \aleph(1, z) + 144i \hat{\mu} \aleph(2, z) \right\} \left(\frac{1}{12} \hat{\mu}^2 \right) \aleph(2, z) + \frac{2}{7} \aleph(z) \} \hat{m}_D \right] \\
+ \frac{c_A \alpha_s}{3\pi} \left[- \frac{15}{4} + \frac{45}{2} \hat{m}_D - \frac{135}{2} \hat{m}_D^2 - \frac{495}{4} \left(\ln \frac{\hat{\Lambda}}{2} + \frac{5}{22} + \gamma_E \right) \right] + \left(\frac{c_A \alpha_s}{3\pi} \right)^2 \left[\frac{45}{4} \hat{m}_D - \frac{165}{8} \left(\ln \frac{\hat{\Lambda}}{2} \right. \right. \\
- \frac{72}{11} \ln \hat{m}_D - \frac{84}{55} - \frac{6}{11} \gamma_E - \frac{74}{11} \frac{\zeta'(1-1)}{\zeta(-1)} + \frac{19}{11} \frac{\zeta'(1-3)}{\zeta(-3)} \right] + \frac{1485}{4} \left(\ln \frac{\hat{\Lambda}}{2} - \frac{79}{44} + \gamma_E - \ln 2 - \frac{\pi^2}{11} \right) \hat{m}_D \hat{m}_D^3 \]
NNLO HTL Pressure $\mathcal{P}(T, \mu)$:

N. Haque, J. Andersen, MGM, M. Strickland, N. Su, PRD90(2014)

$\mathcal{P}(T, \mu = 0) \rightarrow$ Andersen et al JHEP 8(2011)053

Thermodynamics

NNLO $\Delta P(T, \mu) = P(T, \mu) - P(T, 0)$:

N. Haque, J. Andersen, MGM, M. Strickland, N. Su, PRD90(2014)
NNLO Energy Density:

N. Haque, A. Bandyopadhyay, J. Andersen, MGM, M. Strickland, N. Su, JHEP (2014)
NNLO Entropy Density:

N. Haque, A. Bandyopadhyay, J. Andersen, MGM, M. Strickland, N. Su, JHEP (2014)
NNLO Trace Anomaly: \((\mathcal{E} - 3\mathcal{P})/T^4:\)

N. Haque, A. Bandyopadhyay, J. Andersen, MGM, M. Strickland, N. Su, JHEP (2014)
NNLO speed of sound $c_s^2 = dP/d\epsilon$:

N. Haque, A. Bandyopadhyay, J. Andersen, MGM, M. Strickland, N. Su, JHEP (2014)
NNLO Baryon No. Susceptibilities: χ^B_2 and χ^B_4

N. Haque, A. Bandyopadhyay, J. Andersen, MGM, M. Strickland, N. Su, JHEP (2014)
Fourth order diagonal quark number fluctuations

N. Haque, A. Bandyopadhyay, J. Andersen, MGM, M. Strickland, N. Su, JHEP (2014)
Rejoice with New LQCD data

At high temperature: lattice vs Hard Thermal Loops

HTL results: [Haque et al 1309.3968,1402.6907] Dimensional reduction: [1307.8098]

Lattice results: [WB: 1507.04627]
Comparison with new LQCD Data [Ding et al: arXiv:1507:06637]

FIG. 4. The continuum extrapolated result for χ_4^eq compared to perturbative EQCD calculations shown as the shaded band. The width of the band corresponds to the variation of the renormalization scale from πT to $4\pi T$. The dashed lines correspond to the 3-loop HTL calculations evaluated for the renormalization scale $\Lambda = 4\pi T$, $2\pi T$ and πT (from top to bottom).

FIG. 5. The fourth order off-diagonal susceptibility χ_{22}^{ud} (left).

N. Haque, A. Bandyopadhyay, J. Andersen, MGM, M. Strickland, N. Su, JHEP (2014)
Message from NNLO (3-loop) HTLpt

- HTLpt is a state-of-the-art calculation for thermodynamic (and also for dynamic) quantities for deconfined hot and dense matter.

- NNLO (3-loop) HTLpt improves convergence & overcounting problems in NLO (2-loop) HTLpt.

- NNLO $P(T, \mu), E, \Delta = (E - P)/T^4, \frac{c_s^2}{T}$ and QNSs (χ_2, χ_4) in HTLpt agree with LQCD $T \geq 200$ MeV.

- All these quantities at $T \leq 200$ deviate from LQCD because of T^2 (non-ideal), which is non-perturbative in nature.

- Very recent LQCD data on QNS are rejoice for NNLO HTLpt.

- Work is in progress for the full $\mu - T$ plane (requires ring summation at low T and high μ).

- Needs log resummation to reduce further the renor. scale dependent band!
Collaborators

M G Mustafa (SINP)

2nd Conf. on HIC in the LHC era & beyond ICISE, Quy Nhon; 31/07/15

Jen Andersen
(Norwegian U. Sci. Tech.)

Aritra Bandyopadhyay
(Saha Inst., India)

Najmul Hague
(Kent State Univ. USA)

Michael Stricksand
(Kent State Univ. USA)

Nan Su
(Frankfurt U., Germany)
THANK YOU
Application of HTLpt: an improved perturbation theory

- This state-of-the-art machinery can be extended for $T = 0$ but any μ, appropriate for FAIR perspective. Work is in progress for both NLO & NNLO!
- No LQCD data at $\mu \neq 0$ and $T = 0$ (Difficult task)!

HTLpt is important

- for various particle productions (l^+l^-, γ, \cdots) in QGP
- energy-loss/gain for high energetic particles in QGP
- one and two body potential in QGP
- mesonic correlation function for binary states in QGP

Difficult to trade around phase transition line; No chiral symmetry broken/restoration and confinement/deconfinement information!

Beyond scope to discuss all
Fluctuations of conserved charges

In three loop HTLpt case, we have a diagram:

The flavor of two fermionic loop are not same always.

⇒ Off-diagonal susceptibility is non-zero.

⇒ Quark number fluctuations and baryon number fluctuations are not proportional to each other.
Fluctuations of conserved charges

- Fluctuations and correlations of conserved charges are sensitive probes of deconfinement.
- Quark Number fluctuation for three flavor system is defined as
 \[
 \chi_{ijkl}^{uds}(T) = \frac{\partial^{i+j+k}\mathcal{P}}{\partial\mu_u^i \partial\mu_d^j \partial\mu_s^k}
 \]
- We can also define Baryon Number fluctuations as
 \[
 \chi_n^B(T) = \frac{\partial^n\mathcal{P}}{\partial\mu_B^n}
 \]
 with \(\mu_B = \mu_u + \mu_d + \mu_s\) for three-flavor system.
7.1. Baryon number susceptibilities

We begin by considering the baryon number susceptibilities. The n^{th}-order baryon number susceptibility is defined as

$$\chi_{B}^{n}(T) = \frac{\partial^{n} P}{\partial \mu_{B}^{n}} |_{\mu_{B}=0}. \quad (7.2)$$

For a three flavor system consisting of (u, d, s), the baryon number susceptibilities can be related to the quark number susceptibilities [15]

$$\chi_{2}^{B} = \frac{1}{9} \left[\chi_{2}^{uu} + \chi_{2}^{dd} + \chi_{2}^{ss} + 2\chi_{2}^{ud} + 2\chi_{2}^{ds} + 2\chi_{2}^{us} \right], \quad (7.3)$$

and

$$\chi_{4}^{B} = \frac{1}{81} \left[\chi_{4}^{uuuu} + \chi_{4}^{dddd} + \chi_{4}^{ssss} + 4\chi_{4}^{uuud} + 4\chi_{4}^{uuds} + 4\chi_{4}^{ddds} + 4\chi_{4}^{ddus} + 4\chi_{4}^{ssus} + 6\chi_{4}^{uudd} + 6\chi_{4}^{udds} + 6\chi_{4}^{udss} + 12\chi_{4}^{uuds} + 12\chi_{4}^{ddus} + 12\chi_{4}^{ssus} \right]. \quad (7.4)$$

If we treat all quarks as having the same chemical potential $\mu_{u} = \mu_{d} = \mu_{s} = \mu = \frac{1}{3} \mu_{B}$, eqs. (7.3) and (7.4) reduce to $\chi_{2}^{B} = \chi_{2}^{uu}$ and $\chi_{4}^{B} = \chi_{4}^{uuuu}$. This allows us to straightforwardly compute the baryon number susceptibility by computing derivatives of (4.5) with respect to μ.

$$\chi_{2}^{ud} = \chi_{2}^{ds} = \chi_{2}^{su} = 0, \quad (7.5)$$

and, as a result, the single quark second order susceptibility is proportional to the baryon number susceptibility

$$\chi_{2}^{uu} = \frac{1}{3} \chi_{2}^{B}. \quad (7.6)$$

For the fourth order susceptibility, there is only one non-zero off-diagonal susceptibility, namely $\chi_{4}^{uudd} = \chi_{4}^{uuss} = \chi_{4}^{dsss}$, which is related to the diagonal susceptibility, e.g. $\chi_{4}^{uuuu} = \chi_{4}^{dddd} = \chi_{4}^{ssss}$, as

$$\chi_{4}^{uuuu} = 27 \chi_{4}^{B} - 6 \chi_{4}^{uudd}. \quad (7.7)$$
IR problem in pQCD

Figure: Divergent \((l + 1)\)-order loop diagrams

\[
g^{2l}(T \int d^3k)^{l+1} k^{2l} (k^2 + m^2)^{-3l}
\]

For \(l = 3\) : \(g^6 T^4 \ln \frac{T}{m}\)

For \(l > 3\) : \(g^6 T^4 \left(\frac{g^2 T}{m} \right)^{l-3}\)

For \(l \geq 3\) : one needs to calculate infinite number of diagrams for \(g^6\)
IR problem in pQCD

For $l = 2$:
$$ g^4 T^2 \ln \frac{T}{m} $$

- magnetic mass: $m = g^2 T$

For $l \geq 3$:
$$ g^6 T^2 \ln \frac{T}{m}; \quad g^4 T^2 \left(\frac{g^2 T}{m} \right)^{l-2} $$

For ≥ 3; one needs to calculate infinite number of diagrams for g^6
Dimensional Reduction

Electrostatic QCD (EQCD)

Result: 3-dimensional effective theory over distances $\lesssim 1/gT$:
[Braaten,Nieto]

$$L_{EQCD} = \frac{1}{4} F_{ij}^a F_{ij}^a + \text{Tr}[D_i, A_0]^2 + m_E^2 \text{Tr}[A_0^2] + \lambda_E^{(1)} (\text{Tr}[A_0^2])^2$$
$$+ \lambda_E^{(2)} \text{Tr}[A_0^4] + \cdots$$

where $F_{ij}^a = \partial_i A_j^a - \partial_j A_i^a + g_E f^{abc} A_i^b A_j^c$ and $D_i = \partial_i - ig_E A_i$.

Higher order operators do not (yet) contribute:

$$\frac{\delta p_{QCD}(T)}{T} \sim g^2 \frac{D_k D_l}{(2\pi T)^2} L_{EQCD} \sim g^2 \frac{(gT)^2}{(2\pi T)^2} (gT)^3 \sim g^7 T^3.$$
Dimensional Reduction

Eff. gauge coupling g_E^2 **und mass** m_E^2

- Four matching coefficients have to be determined:

 $m_E^2 = T^2 \left[\# g^2 + \# g^4 + \# g^6 + \ldots \right],$

 $g_E^2 = T \left[\# g^2 + \# g^4 + \# g^6 + \# g^8 + \ldots \right],$

 $\lambda_E^{(1/2)} = T \left[\# g^4 + \ldots \right].$

- 2-loop correction [Laine, Schröder]‘05

- Coefficients can be determined by matching: require the same result in QCD and EQCD.

- Many possibilities, Here: Computation of self-energies $\Pi_{\mu\nu}$ on both sides.
Symmetries in QCD

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Vacuum</th>
<th>High T</th>
<th>Low T, high μ</th>
<th>Order parameter</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Local) color $SU(3)$</td>
<td>Unbroken</td>
<td>Unbroken</td>
<td>Broken</td>
<td>Diquark condensate</td>
<td>Color superconductivity</td>
</tr>
<tr>
<td>$Z(3)$ center symmetry</td>
<td>Unbroken</td>
<td>Broken</td>
<td>Broken</td>
<td>Polyakov loop</td>
<td>Confinement/deconfinement</td>
</tr>
<tr>
<td>Scale invariance</td>
<td>Anomaly</td>
<td></td>
<td></td>
<td>Gluon condensate</td>
<td>Scale (Λ_{QCD}), running coupling</td>
</tr>
<tr>
<td>Chiral symmetry $U_L(N_f) \times U_R(N_f) = U_V(1) \times SU_V(N_f) \times SU_A(N_f) \times U_A(1)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_V(1)$</td>
<td>Unbroken</td>
<td>Unbroken</td>
<td>Unbroken</td>
<td>—</td>
<td>Baryon number conservation</td>
</tr>
<tr>
<td>Flavor $SU_V(N_f)$</td>
<td>Unbroken</td>
<td>Unbroken</td>
<td>Unbroken</td>
<td>—</td>
<td>Multiplets</td>
</tr>
<tr>
<td>Chiral $SU_A(N_f)$</td>
<td>Broken</td>
<td>Unbroken</td>
<td>Broken</td>
<td>Quark condensate</td>
<td>Goldstone bosons, no degenerate states with opposite parity</td>
</tr>
<tr>
<td>$U_A(1)$</td>
<td>Anomaly</td>
<td></td>
<td></td>
<td>Topological susceptibility</td>
<td>Violation of intrinsic parity</td>
</tr>
</tbody>
</table>
Trace Anomaly

- pQCD only scale is T; $\epsilon, P \sim T^4$

- Non-ideal behaviour $\sim T^2$ in addition to T^4 (ideal behaviour)

- Effective model should incorporate this feature and QCD symmetries
Chiral Perturbation Theory

- χ-PT: a systematic approach to describe strongly interacting system (lightest hadrons) at low T and μ
- It accounts smallness up/down quark mass and broken chiral symmetry
- It does not work when hadron resonances start influencing the properties of strongly interacting system
Thermodynamic Pressure of massless QCD at $T \& \mu \neq 0$

Thermodynamic observables via partition function in path integral representation and Euclidean space-time:

$$Z(T, \mu) \equiv \text{Tr}(e^{-\beta H}) \rightarrow \int DA^a \ Dc \ D\bar{c} \ D\psi \ D\bar{\psi} \ exp\ [-S_E]$$

$$S_E = \int_0^\beta d\tau \int d^{d-1}x (L_E - \mu N)$$

and $\beta \equiv 1/T$; $T =$ Temperature

Pressure: $P = \lim_{V \rightarrow \infty} \frac{T}{V} \ln Z$

Other Quantities using Thermodynamic Relations
Why BAND?

Running coupling constant corresponding to one loop beta function

\[\alpha_s(\Lambda) = \frac{12\pi}{11C_A - 2N_f} \frac{1}{\ln \left(\frac{\Lambda^2}{\Lambda_{MS}^2} \right)} \]

- \(C_A \) = Color factor associated with gluon emission from a gluon. For \(SU(N_C) \) gauge theory, \(C_A = N_C \).
- \(N_f \) = Number of flavor,
- \(\Lambda_{MS} \) = QCD scale. For one loop beta function with \(N_f = 3 \), \(\Lambda_{MS} = 176 \) MeV(from Lattice).
- \(\Lambda = \) Renormalization scale which is \(\sim 2\pi T \) at finite temperature. We choose here the center value as \(2\pi \sqrt{T^2 + \mu^2/\pi^2} \) and we varied the center value by a factor of 2.
Other Thermodynamic quantities

Entropy density $S(T, \mu) = \frac{\partial P}{\partial T}$,

Number density $n_i(T, \mu_i) = \frac{\partial P}{\partial \mu_i}$,

Energy density $\mathcal{E}(T, \mu) = T \frac{\partial P}{\partial T} + \mu \frac{\partial P}{\partial \mu} - P$

Speed of sound $c_s^2(T, \mu) = \frac{\partial P}{\partial \mathcal{E}}$

Trace anomaly $I(T, \mu) = \mathcal{E} - 3P$