Review of heavy quarkonium production mechanism in pp collisions from low to high p_t

Hong-Fei Zhang

Third Military Medical University

July 29, 2015
Overview

J/ψ polarization puzzle

Heavy quarkonia production at small p_t

Quarkonia production in proton-nucleus collisions

Summary
Overview

A good laboratory

- good features
 - Heavy enough for perturbative calculations
 - Clear signal
 - Simple structure

- J/ψ suppression as a signature of quark-gluon plasma (QGP)\(^1\)
 - Hot-nuclear-matter (HNM) effects: pA (dA) collisions
 - Cold-nuclear-matter (CNM) effects: AA collisions

\(^1\)Matsui, Satz, PLB 178, 416 (1986)
Review of heavy quarkonium production mechanism in pp collisions from low to high p_t

Overview

Colour-singlet Model (CSM)

- ψ' (J/ψ) surplus
- IR divergence at LO: e.g. h_c radiative decay

2CDF Collaboration, PRL 69, 3704 (1992)
Overview

- Colour-evaporation Model (CEM)

- Poor agreement with p_t spectrum of ψ hadroproduction

- Wrong for ratio: e.g. $\sigma(\chi c_1) : \sigma(\chi c_2)$, $\sigma(\chi c) : \sigma(J/\psi)$

- Do not apply to polarization

Schuler and Vogt, PLB 387, 181 (1996); ATLAS, NPB 850, 387 (2011)
Nonrelativistic QCD (NRQCD)5

- Seperated scales $m_Q, m_Q v^2$
- $v^2 = 0.3$ for charmonium, $v^2 = 0.1$ for bottomonium
- Time scales: heavy quark pair fluctuation $\sim 1/m_Q$; hadronization $\sim 1/(m_Q v^2)$
- NRQCD Factorization (proof up to NNLO4)

$$d\sigma(H) = \sum_n df_n \langle \mathcal{O}^H(n) \rangle$$

- f_n: Short-distance coefficient (SDC): production of a heavy quark pair, to be calculated perturbatively
- $\langle \mathcal{O}^H(n) \rangle$: Long-distance matrix element (LDME): hadronization, to be extracted from experiment

4Nayak, Qiu and Sterman, PRD 72, 114012 (2005)
5Bodwin, Braaten and Lepage, PRD 51, 1125 (1995)
Overview

Review of heavy quarkonium production mechanism in \(pp \) collisions from low to high \(p_T \)
Review of heavy quarkonium production mechanism in pp collisions from low to high p_T

Overview
Overview

NRQCD

- Expansion in ν
 - $3S_1^{[1]}$, $1S_0^{[8]}$, $3S_1^{[8]}$ and $3P_J^{[8]}$ involved in ψ (Υ) production up to $O(\nu^4)$

- CSM and CEM are special cases
 - CSM: Colour-octet (CO) channels omitted
 - CEM: higher order in ν involved6

- NRQCD tackled the weakness of CSM
 - IR divergences cancelled
 - NRQCD prediction for ψ' hadroproduction

6Bodwin, Braaten and Lee, PRD 72, 014004 (2005)
Review of heavy quarkonium production mechanism in pp collisions from low to high p_t

J/ψ polarization puzzle

- LO NRQCD failed in the description of ψ polarization\(^7\)

\[\alpha = \frac{\sigma_T - \sigma_L}{\sigma_T + \sigma_L} \]

- high p_t limit
 - dominant channel: $^3S_1^{[8]}$
 - dominant mechanism: gluon fragmentation \rightarrow transversely polarized

Review of heavy quarkonium production mechanism in pp collisions from low to high p_t J/ψ polarization puzzle

NLO era

NLO for CS8 and CO9

- CS: enhanced by one order, still far below the data
- $^1S_0^{[8]}$: $p_t^{-6} \rightarrow$ another small p_t^{-4} part introduced
- $^3S_1^{[8]}$: almost unchanged
- $^3P_J^{[8]}$: positive \rightarrow minus, $p_t^{-6} \rightarrow p_t^{-4}$

$$df(3P_J^{[8]}) = r_0 df(1S_0^{[8]}) + r_1 df(3S_1^{[8]})$$ (medium and high p_t, roughly)

8Campbell, Maltoni and Tranmontano, PRL 98, 252002 (2007)
P-wave states at NLO

- QCD corrections to s-wave LDMEs cancel the singularities in the SDCs
- χ_c production: $^3P_J^{[1]}$ and $^3S_1^{[8]}$ associated
- J/ψ production: $^3P_J^{[8]}$, $^3S_1^{[8]}$ and $^3S_1^{[1]}$ associated
- Only the combination of the associated channels is divergence free and NRQCD scale (μ_Λ) independent
Polarization at NLO

- Left10 (missing feeddown): Global fit, transversely polarized, bad agreement
- Middle11 (missing feeddown): $^1S_0^{[8]}$ dominance, agree with CDF Run II data
- Right12 (complete): agree with CDF Run I data, contradict CDF Run II data

Different fitting strategy \rightarrow different LDMEs \rightarrow different phenomenology

Three LDMEs to be determined, too many!

10 Butenschoen and Kniehl, PRL 108, 172002 (2012)
11 Chao, Ma, Shao, Wang and Zhang, PRL 108, 242004 (2012)
12 Gong, Wan, Wang and HFZ, PRL 110, 042002 (2013)
Review of heavy quarkonium production mechanism in pp collisions from low to high p_t

J/ψ polarization puzzle

$1S_0^{[8]}$ dominance picture faces challenge

Why $1S_0^{[8]}$ dominance?

- p_t spectrum: NLO $1S_0^{[8]}$ similar to direct J/ψ
- Polarization: $1S_0^{[8]}$ unpolarized

Challenges

- Violate velocity scaling rule
- Violate η_c hadroproduction data

$\sqrt{s} = 7$ TeV
LDMEs: Bodwin et al.

$\sqrt{s} = 7$ TeV
LDMEs: Chao et al.

$\sqrt{s} = 7$ TeV
LDMEs: Gong et al.

$\sqrt{s} = 7$ TeV
LDMEs: Butenschön et al.

13Butenschoen, He and Kniehl, PRL 114, 092004 (2015); LHCb, EPJC 75, 311 (2015)
η_c and J/ψ hadroproduction data reconciled

- η_c data help to determine LDMEs, consistent with J/ψ hadroproduction data\(^{14}\)

\(^{14}\)Han, Ma, Meng, Shao and Chao, PRL 114, 092005 (2015); HFZ, Sun, Sang and Li, PRL 114, 092006 (2015)
Review of heavy quarkonium production mechanism in pp collisions from low to high p_t

J/ψ polarization puzzle remains

- Bad agreement with J/ψ polarization in midrapidity region
- σ_T/σ_L: 2.3 vs. 1.2

<table>
<thead>
<tr>
<th>p_t (GeV)</th>
<th>λ</th>
<th>σ_T/σ_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1</td>
<td>2.3</td>
</tr>
<tr>
<td>0.2</td>
<td>-0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>0.4</td>
<td>-0.6</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>-0.4</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- Tevatron $\sqrt{s} = 1.96$ TeV $|y| < 0.6$
- CDF Run I
- CDF Run II
- CMS data $\sqrt{s} = 7$ TeV $|y| < 0.6$
- NLO NRQCD

- Tevatron $\sqrt{s} = 1.96$ TeV $|y| < 0.6$
- CDF Run II
- CMS data $\sqrt{s} = 7$ TeV $|y| < 1.2$
- NLO NRQCD
Charmonia hadroproduction and polarization data reconciled15

- New discovery in phenomenology 1)
 - The unique key parameter to govern the polarization:
 \[R_{J/\psi} \equiv \langle O^{J/\psi}(3S_1^{[8]}) \rangle / \langle O^{J/\psi}(3P_0^{[8]}) \rangle \]
 - Equation to govern the yield: \[\langle O^{\psi}(3S_1^{[8]}) \rangle = k_\psi \langle O^{\psi}(3P_0^{[8]}) \rangle + b_\psi \]
 - \(k_{J/\psi} = 0.367, \ b_{J/\psi} = 0.00348 \pm 0.00011 \text{GeV}^3, \ R_{J/\psi} = 0.546 \pm 0.006 \)
 - The polarization is extremely sensitive to \(R_{J/\psi} \)
 - narrow yield band \(\rightarrow \) huge polarization band

- Conclusion
 - Minimizing \(\chi^2 \) in the fit to yield data is not reasonable!
 - Yield data does not provide information for polarization!

15Sun and HFZ, 1505.02675
Charmonia hadroproduction and polarization data reconciled

- **New discovery in phenomenology 2)**
 - J/ψ polarization understood

- Relativistic corrections will improve CDF predictions
- $\psi(2s)$ polarization can also be understood
Charmonia hadroproduction and polarization data reconciled

- J/ψ yield data can also be described
Review of heavy quarkonium production mechanism in \(pp \) collisions from low to high \(p_t \)

\(J/\psi \) polarization puzzle

\(\chi_c \), the best laboratory to test NRQCD

- Only one free parameter
- Good agreement with all the existing data\(^{16}\)

\[^{16}\text{Ma, Wang and Chao, PRD 83, 111503(R) (2011); Shao, Ma, Wang and Chao, PRL 112, 182003 (2014); HFZ, Yu, Zhang and Jia, 1410.4032 (2014)}\]
Review of heavy quarkonium production mechanism in pp collisions from low to high p_t

Heavy quarkonia production at small p_t

Collins-Soper-Sterman (CSS) resummation

- Υ: CSS+CEM17

- Υ and J/ψ: CSS+NRQCD18

17 Berger, Qiu and Wang, PRD 71, 034007 (2005)

18 Sun, Yuan and Yuan, PRD 88, 054008 (2013)
log(x) resummation is important for J/ψ

- Colour-singlet cross sections as a function of c.m. energy
- $d\sigma/dy$ is free of $\log^2(p_t/m_c)$, still negative cross sections
- The only large log: $\log(x)$
- Υ better than J/ψ

19Feng, Lansberg and Wang, EPJC 75, 313 (2015)
Review of heavy quarkonium production mechanism in pp collisions from low to high p_t

Heavy quarkonia production at small p_t

Colour Glass Condensate (CGC)

- Dilute-dense approximation
 - $x > x_0$: dilute; $x < x_0$: dense
- Resum $\log(x)$
- JIMWLK evolution

20Mclerran and Venugopalan, PRD 49, 2233; 49, 3352; 50, 2225 (1994)
Review of heavy quarkonium production mechanism in pp collisions from low to high p_T.

Bad agreement

MV$	ext{g}_{1118}^{\text{coll}}$ PHENIX pp

MV$	ext{g}_{1118}^{\text{coll}}$ ALICE pp

MV$	ext{g}_{1118}^{\text{coll}}$ LHCb pp

Fujii and Watanabe, NPA 915, 1 (2013)
Review of heavy quarkonium production mechanism in pp collisions from low to high p_t
Heavy quarkonia production at small p_t

CGC+NRQCD22

- Good agreement

- Not good in midrapidity region at low energy where dilute-dense approximation is ruined (HFZ)

22Kang, Ma and Venugopalan, JHEP 1401, 056 (2013); Ma and Venugopalan, PRL 113, 192301 (2014)
Review of heavy quarkonium production mechanism in \(pp \) collisions from low to high \(p_t \)
Quarkonia production in proton-nucleus collisions

\(J/\psi \) production in \(pA \) collisions at high \(p_t^{24} \)

- EPS09 employed\(^{23}\)
- \(p_t \) spectrum

\[\begin{align*}
\text{\(y \) distribution} \\
\text{\(d\sigma/d\gamma (\text{nb}) \)}
\end{align*} \]

\(^{23}\) Eskola, Paukkunen and Salgado, JHEP 0904, 065 (2009)
\(^{24}\) HFZ and etc., in preparation
Two free parameters: $Q_{s0,A}$ and R_A

$Q_{s0,A}^2 = N \times Q_{s0,p}^2$

- $N \approx 3$ for $\gamma = 1.113$; $N \approx 1.5$ for $\gamma = 1$
- We set $\gamma = 1$, $N = 2$ as a tentative choice

$R_{pA} \equiv \frac{d\sigma_{pA}}{A \times d\sigma_{pp}}$

- $R_{pA} \rightarrow R_A^2 \frac{Q_{s0,A}^2}{Q_{s0,p}^2}$ (high p_t)
- $R_{pA} \rightarrow 1$ at high p_t, a natural assumption to determine R_A

25Ma, Venugopalan and HFZ, 1503.07772 (2015)
Review of heavy quarkonium production mechanism in \(pp \) collisions from low to high \(p_t \)

Quarkonia production in proton-nucleus collisions

\(J/\psi \) production in \(pA \) collisions

\(p_t \) spectrum

\[p_t \text{ spectrum} \]

\[d\sigma_{NN}/dp_t \text{ (mb/GeV)} \]

\[p_t \text{ (GeV)} \]

\(y \) distribution

\[d\sigma_{NN}/dy \text{ (nb)} \]

\[y \]

[Graphs showing the \(p_t \) and \(y \) distributions for different energy scales and models, including LHCb and RHIC data.]
Review of heavy quarkonium production mechanism in \(pp \) collisions from low to high \(p_t \)

Quarkonia production in proton-nucleus collisions

\(J/\psi \) suppression

- \(R_{pA} \) as a function of \(p_t \)

\[R_{pA} \text{ as a function of } p_t \]

- \(R_{pA} \) as a function of \(y \)

\[R_{pA} \text{ as a function of } y \]
NRQCD can describe both ψ production and polarization

Minimizing χ^2 is not appropriate in the determination of the LDMEs

Small-x resummation is required in small p_t region

CGC+NRQCD provide good description of both pp and pA data

pQCD+NRQCD can describe the high-p_t J/ψ production data in pA collision
Thanks!