Effects of event-by-event hydrodynamic fluctuations in an integrated dynamical model

2015/7/27,
Second conference on heavy ion collisions in the LHC era and beyond,
Vietnam

Koichi Murase^A, Tetsufumi Hirano^B

The University of Tokyo^A,
Sophia University^B

Fluctuations in heavy-ion collisions

Final observables

– flow harmonics v_n , etc.

Response of Matter EoS, η , ζ , τ_R , λ , ...

- Initial-state fluctuations
 - nucleon distribution
 - quantum fluctuations

Fluctuations in heavy-ion collisions

Final observables

quantum fluctuations

– flow harmonics v_n , etc. Other fluctuations + hydro fluctuations Relativistic hydrodynamics + jets/mini-jets '∼QGP) + critical phenomena collision axis Initial state fluctuation nucleon distribution

Hydrodynamic Fluctuations

HF = Thermal fluctuations of dissipative currents

e.g.
$$\pi^{\mu\nu}=2\eta\partial^{\langle\mu}u^{\nu\rangle}+\delta\pi^{\mu\nu}$$

ensemble/event averaged

thermal fluctuations at each spacetime *x*

decrease anisotropy Fluctuation-Dissipation Relation

$$\langle \delta \pi^{ij} \delta \pi^{ij} \rangle \sim 4T\eta/V$$

V: 3+1 dim. volume

HF is important in e-by-e description of HIC

Integrated dynamical model

Integrated Dynamical Model

5. **Analysis** of hadron distribution

2. (3+1)-dim. Relativistic

Fluctuating Hydrodynamics

FoS: lattice OCDS-HPC n/s = 1/4π

1. Initial condition

MC-KLN

Updates of T. Hirano, P. Huovinen, KM, Y. Nara, PPNP **70**, 108 (2012) [arXiv:1204.5814]

Two types of calculations

Collision system

Au+Au, $\sqrt{s_{NN}} = 200 \text{ GeV}$

Setup A: HF Only

→ Qualitative behavior of the effects

Setup B: Both of Initial-state fluctuations and HF

> Comparison between the effects of each fluctuations

Setup A: HF only

Setup A: HF only

Initial condition

 $b = 6.45 \text{ fm } (\sim \text{Centrality } 20\%)$

Averaged MC-KLN (CGC)

x-y plane

$$\eta_s$$
-x plane

• (3+1)-dim Relativistic Fluctuating Hydrodynamics:

Туре	η/s	HF	Hydro	Cascades
Ideal	0	none	1 event	10 ⁴ events
Viscous	1/4π	none	1 event	10 ⁴ events
Fluctuating	1/4π	σ=0.8, 1.0, 1.2 (fm)*	10 ⁴ events \times 3	10 ⁴ events \times 3

σ: HF cutoff length scale

A: Hydrodynamic evolution

without HF

conventional 2nd-order viscous hydro

with HF

2nd-order fluctuating hydro

 η_s

10

A: $dN_{ch}/d\eta$

- Increase ← entropy production by HF
- Larger effect with a shorter cutoff length σ

A: p_T-spectra (pions)

High-pt particles increase with HF
 ← accelerated by local flows

A: Elliptic flow $v_2\{2\}$

 decreased by viscosity, unchanged by HF
 ← local flows do not change the global flow profile

A: Elliptic flow $v_2\{2\}(\eta)$

Decrease with viscosity, increase with HF
 ← increase of high-p_T particles

Setup B: IS fluctuations + HF

2015/7/27 15

Setup B: IS Fluctuations and HF

Initial condition

b: not fixed (Minimum bias)

MC-KLN (CGC)

x-y plane

• (3+1)-dim Relativistic Fluctuating Hydrodynamics:

Туре	η/s	HF	Hydro	Cascades
Ideal	0	none	10 ⁵ events	10 ⁵ events
Viscous	1/4π	none	10 ⁵ events	10 ⁵ events
Fluctuating	1/4π	σ = 1.0 (fm)	10 ⁵ events	10 ⁵ events

B: Hydrodynamic evolution

without HF

conventional 2nd-order viscous hydro

with HF

2nd-order fluctuating hydro

 η_s

B: Elliptic flow $v_2(\eta)$

v2(fluctuating) > v2(ideal) in central collisions

Central: (IS Fluct.) + (HF)

Non-central: (IS Fluct.) + (HF) + (Collision geometry)

Same order with IS fluctuations

B: $v_2\{2\}$ (p_T), $v_3\{2\}$ (p_T)

- v₂ increase with HF in central collisions
- Similar behavior for v₃

Summary

Summary

- Hydrodynamic fluctuations (HF): thermal fluctuations of hydrodynamics
- Relativistic fluctuating hydrodynamics in an integrated dynamical model
 - Increase of high-p_⊤ hadrons by HF
 - Increase of $v_2(p_T)$, $v_3(p_T)$ in central collisions
 - Increase of integrated v₂
 - HF: Important in extracting the transport properties
- Outlook
 - Larger statistics
 - Quantitative analyses

2014/08/06

Backup

2014/08/06

B: p_T-spectra (pions)

- Points: PHENIX PRC69 (2004) 034909
- Black lines: ideal hydrodynamics
- Blue lines: viscous hydrodynamics
- Red lines: fluctuating hydrodynamics
 0-4%, 5-10%, 10-15%, 15-20%, 20-30%,
 30-40%, 40-50%, 50-60%, 60-70%, 70-80%
 from top to bottom (multiplied by 10⁴-10⁻⁵)

- Increase of high-p_T pions: larger in peripheral collisions
 ← larger thermal fluctuations in smaller systems
- Correction of distribution in Cooper-Frye formula by HF?