Open Heavy Flavor Results from RHIC and the LHC

NICOLE APADULA
IOWA STATE UNIVERSITY
FOR THE PHENIX COLLABORATION
Why Study Heavy Quarks?

- Charm ($m_c \sim 1.5$ GeV) & Bottom ($m_b \sim 5$ GeV)

- $m_{c,b} >> \Lambda_{QCD}$
 - Large mass \rightarrow short formation time
 - Medium doesn’t change flavor, but can modify phase-space distribution
 - Difficult to destroy or create in medium

- Experience full evolution of medium
 - Describe medium and interaction
 - Measure intrinsic transport properties
The Role of Heavy Quarks: \(p+p \) collisions

- Test pQCD predictions
 - Results in good agreement w/FONLL predictions
- Baseline for \(p(d)+A \) and \(A+A \) collisions

PRC 84(2011)084905
The Role of Heavy Quarks: A+A collisions

- Energy loss in the medium
- "Dead cone" effect
 - $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$
- Collectivity
 - Heavy quarks flow
 - Thermalization

Nuclear modification factor

$$R_{AA} = \frac{dN_{AA}}{\langle N_{coll} \rangle \times dN_{pp}}$$

PRC 84, 044905 (2011)
The Role of Heavy Quarks: p(d)+A collisions

- Another baseline system?
- Cold nuclear matter effects?

Modification to the nPDF

p_T broadening
Measuring Heavy Flavor
Measuring Heavy Flavor

- **Direct**
 - Full hadron kinematics
 - Hard to trigger
 - Large combinatorial background
Measuring Heavy Flavor

- **Direct**
 - Full hadron kinematics
 - Hard to trigger
 - Large combinatorial background

- **Indirect**
 - Kinematic smearing
 - Easy to trigger – high statistics
 - Lots of background sources
 - Branching ratios ~10%
p+p collisions
Charm in p+p

- Data consistent with pQCD FONLL calculations
 - Multiple \sqrt{s} energies, experiments, rapidities
Bottom in p+p

- Data consistent with pQCD FONLL calculations
 - Multiple \sqrt{s} energies, experiments, rapidities

PRL 103(2009)082002

PLB 738(2014)97

PLB 708(2012)265
Data consistent with pQCD FONLL calculations
A+A collisions
• Total charm cross section (RHIC mid-rapidity) scales with number of binary collisions
Heavy flavor leptons in A+A

- Significant energy loss in the medium
 - $R_{AA} < 1$ for $p_T > 2$GeV/c
 - $R_{AA}(HF) \sim R_{AA}(LF)$

- $R_{AA}(e) \sim R_{AA}(\mu)$
 - No rapidity dependence

Phys. Rev. Lett. 98, 172301 (2007)
Charm modification

- High p_T: $R_{AA}(D) \sim R_{AA}(e)$
- Low p_T at RHIC: Enhancement
Charm modification

- **High p_T:** Similar suppression at RHIC & LHC
- **Low p_T:** CNM?
 - Probing different x-regions ($\sim 10^{-3}$ LHC & 10^{-2} RHIC)
 - Charm flow?

![Graph showing Charm modification](image)
• Possibly with the medium
• Need better precision data at low p_T
Suppression across systems

- $R_{AA}^{(HF)} \sim R_{AA}^{(LF)}$
- $R_{AuAu} \sim R_{UU}$ for similar N_{part}
- Several models consistent with the data
 - Should also describe v_2 and correlations
Dependence on collision energy

- No suppression at high p_T observed
 - π^0 still suppressed
- $v_2(62.4/39 \text{ GeV}) < v_2(200 \text{ GeV})$
 - Reduced/no strong interaction with the medium?

$p+p$ reference from ISR data

arXiv:1405.6348v1

PRC 91, 044907 (2015)
p(d)+A collisions
What about the other “small” systems? $p(d)+A$

- RHIC
What about the other “small” systems? p(d)+A

- RHIC
 - Mid-rapidity
 - No modification
What about the other “small” systems? $p(d)+A$

- **RHIC**
 - Mid-rapidity
 - No modification
 - Forward rapidity
 - Shadowing
What about the other “small” systems? $p(d)+A$

- **RHIC**
 - Mid-rapidity
 - No modification
 - Forward rapidity
 - Shadowing
 - Backward rapidity
 - Anti-shadowing
What about the other “small” systems? $p(d)+A$

- **RHIC**
 - Mid-rapidity
 - No modification
 - Forward rapidity
 - Shadowing
 - Backward rapidity
 - Anti-shadowing

- **LHC**
 - Mid-rapidity: low-x
RHIC mid-rapidity d+Au

- Peripheral $R_{dA} \sim 1$
- Central $R_{dA} > 1$
- CNM effects?
 - Cronin?
 - p_T broadening?

PRL 109, 242301 (2012)
RHIC mid-rapidity d+Au

- Peripheral $R_{dA} \sim 1$
- Central $R_{dA} > 1$
- CNM effects?
 - Cronin?
 - p_T broadening?
- Or a small drop of HNM?
LHC heavy flavor in p+Pb

- R_{pPb} consistent w/ 1
 - Systematically higher
- $R_{pPb} \sim R_{dAu}$
- Pb+Pb suppression mainly a final state effect

PRL 113, 232301 (2014)
Forward Rapidities: RHIC d+Au

- Peripheral
 - $R_{dA} \sim 1$ for all rapidities

PRL 112, 252301 (2014)
Forward Rapidities: RHIC d+Au

- **Peripheral**
 - $R_{dA} \sim 1$ for all rapidities

- **Central**
 - **Forward**: $R_{dA} < 1$
 - Consistent with pQCD + shadowing
 - **Backward**: $R_{dA} > 1$
 - Consistent with additional k_T broadening
 - Backward & Forward not described simultaneously
Forward Rapidities: LHC p+Pb

- **Forward:** $R_{ppb} \sim 1$
 - No modification
Forward Rapidities: LHC p+Pb

- **Forward:** $R_{p\text{Pb}} \sim 1$
 - No modification

- **Backward:** $R_{p\text{Pb}}$ slightly larger than 1 at low p_T
Forward Rapidities: LHC p+Pb

- **Forward:** $R_{pPb} \sim 1$
 - No modification

- **Backward:** R_{pPb} slightly larger than 1 at low p_T

- Consistent with RHIC results
- Consistent with pQCD models that include CNM effects
System Size Dependence

- **Suppression**
 - Central Cu+Cu & Au+Au

- **Enhancement**
 - Central d+Au & Peripheral Cu+Cu
System Size Dependence

- **Suppression**
 - Central Cu+Cu & Au+Au

- **Enhancement**
 - Central d+Au & Peripheral Cu+Cu

- Same trend for similar N_{part}
Smooth trend from enhancement (central d+Au, peripheral Cu+Cu) to suppression (central Cu+Cu and Au+Au)
B mesons in p+Pb

- p+p reference from FONLL
- $R_{pPb} \sim 1$
- Pb+Pb suppression not coming from CNM effect
Summary

- Open heavy flavor (direct & indirect) give us insight into the medium produced in heavy-ion collisions
 - Energy loss in the medium
 - $R_{AA}(HF) \sim R_{AA}(LF)$
 - Charm quark flow
- $p(d)+A$
 - Evidence for CNM at RHIC (enhancement in mid & backward rapidities, suppression at forward rapidity)
 - No modification at mid-rapidity at LHC
 - Consistent with A+A suppression coming from HNM
- Where do we go from here?
 - Better precision, statistics, extended p_T range,
 - LHC Run II and RHIC Run 14 & 15
 - Upgrades at both the LHC & RHIC
High p_T - Flavor dependence of R_{AA} – “dead-cone” in pQCD
- $R_{AA}(e_D)$ vs. $R_{AA}(e_B)$ indicates bottom suppression in central A+A at RHIC/LHC
- Need precision measurement on both $R_{AA}(D)$ and $R_{AA}(B)$
R_{AA} of b-jets at p_{T}>80 \text{ GeV/c} comparable to that of light jets

\text{caveat: sizable gluon splitting contribution}

Suppression hierarchy between R_{AA}(J/\psi^{B}) and R_{AA}(D)

\text{– consistent with pQCD calculations}