

Electroweak Bosons in Heavy Ion Collisions with the ATLAS Detector

Qipeng Hu (USTC) on Behalf of the ATLAS Collaboration

Second Conference on Heavy Ion Collisions in the LHC Era and Beyond July 2015 Quy Nhon, Vietnam

The ATLAS Detector

LHC Run2 Activity – pp Ridge

Ridge: enhancement of particle yields at $\Delta \phi \sim 0$ and extend over a long range in $\Delta \eta$.

LHC Run2 Activity – pp Ridge

Ridge: enhancement of particle yields at $\Delta \phi \sim 0$ and extend over a long range in $\Delta \eta$.

Integrated long range nearside ridge yield :

- Same contribution from Opp-charge and Samecharge pairs (not from jets and resonances decay).
- ✦Consistent with CMS 7 TeV pp data.

Physics Motivation

- Electroweak (EW) bosons are produced via hard processes at the early stage of the collisions before quark-gluon plasma (QGP) is formed.
- Sensitive to parton distribution function modification in-medium.
- Sensitive to the overall thickness of the colliding nuclear matter.
- Baseline towards understanding centrality and geometry in the *p*+Pb system.

Potential nuclear effects:

- Gluon saturation
- Gluon shadowing
- Partonic energy loss
- modified parton distributions
- modified fragmentation function

Geometry and Centrality

Number of binary collisions: N_{coll} Number of participants in the collision: N_{part}

FCal $E_T \Rightarrow$ Centrality $\Rightarrow N_{coll}$ and N_{part}

Partition FCal total E_{T} distribution into ranges corresponding to fixed percentiles of the total.

Phys. Lett. B707 (2012) 330-348

Prompt photon:

- Direct emission
- Fragmentation contribution

Isolation cut to suppress non-prompt background.

Model with different PDF configurations:

- + JETPHOX (pp)
- JETPHOX (pp+pn, correct isospin)
- JETPHOX EPS09 (nuclear effects)

PDF Test: Prompt Photons in PbPb

arXiv:1506.08552

Ratio to JETPHOX (pp) ATLAS Pb+Pb s =2.76 Te JETPHOX EPS09/pp 40-80%, lŋl < 1.37 20-40%, lpl < 1.37 10-20%, lpl < 1.37 0-10%, ml < 1.37 Ratio to JETPHOX (pp) 0-10%, 1.52 ≤ lηl < 2.37 40-80%, 1.52 ≤ lηl < 2.37 20-40%, 1.52 ≤ lηl < 2.37 10-20%, 1.52 ≤ lηl < 2.37 100 50 30 50 100 50 100 30 30 50 100 30 Photon p_{τ} [GeV] Photon p_{τ} [GeV] Photon p_{τ} [GeV] Photon p_{\perp} [GeV]

Prompt photon:

- Direct emission
- Fragmentation contribution

Isolation cut to suppress non-prompt background.

Model with different PDF configurations:

- + JETPHOX (pp)
- JETPHOX (pp+pn, correct isospin)
- JETPHOX EPS09 (nuclear effects)

Data/Model to JETPHOX (pp) Ratio in 3D

- Visible isospin effects.
- Cannot exclude models w/o nuclear effects.

PDF Test: Prompt Photons in PbPb

arXiv:1506.08552

R_{FC}, forward to central photo yield ratio.

- Reduction of both experimental and theoretic uncertainties in this ratio.
- No precision to veto the NLO pQCD model w/o nuclear effects.

Z Event in Pb+Pb

Measured via di-muon and di-electron channels and combined.

Z peak well reproduced in simulation.

PDF Test: Z Boson in Pb+Pb

Phys. Rev. Lett. 100, 022301(2013)

Z per-event yield differential in rapidity:

Cannot reject model without nuclear effects. No centrality dependence of this shape is observed.

Z Event in *p*+Pb

arXiv:1507.06232

Similar with Pb+Pb analysis. Forward electron used to extend rapidity coverage.

PDF Test: Z Bosons in *p*+Pb

y*: center of mass rapidity being positive in forward (proton beam direction).

Models:

- + CT10 (NLO)
- MSTW2008 (NLO)

CT10+EPS09 (NLO)

arXiv:1507.06232

Z production is enhanced in the backward rapidity y* compared to three models

PDF Test: Z Bosons in *p*+Pb

Z production is enhanced in the backward rapidity y* compared to three models

R_{cp}: more central to most peripheral yield ratio.

A slight rapidity dependence of R_{cp} is observed for most central collisions.

W Event in Pb+Pb

Measured via muon and electron channels and combined.

Momentum imbalance in the transverse plan as a proxy for the true neutrino p_T .

PDF Test: W Bosons in Pb+Pb

Eur. Phys. J. C (2015) 75:23

Models:

- POWHEG CT10
- ✦ CT10+EPS09

PDF Test: W Bosons in Pb+Pb

Eur. Phys. J. C (2015) 75:23

Models:

- W lepton charge asymmetry in pseudorapidity. POWHEG CT10
- + CT10+EPS09
- - Many correlated systematics cancel out in lepton charge asymmetry.
 - Within the experimental precision, cannot distinguish between PDFs that incorporate nuclear effects and those that do not.

Binary Collision Scaling

Left) *Z* boson per-event yield divided by $\langle N_{coll} \rangle$ vs. $\langle N_{part} \rangle$ *Right*) *W* boson per-event yield divided by $\langle N_{coll} \rangle$ vs. $\langle N_{part} \rangle$

- + Z and W per-event yield scales with number of binary collisions in Pb+Pb.
- + Prompt isolated photons show similarly consistent behavior.

Qipeng Hu (USTC)

Centrality Bias in *p*+Pb

Origin: Hard scatterings are often correlated with a larger transverse energy of the underlying event.

Model calculation:

Given correlation between average hardscattering yield Y_{Ncoll} per p+A collision and total E_T , centrality bias corrections factor (arXiv: 1412.0976) can be calculated from:

$$\rho = \frac{Y_{N_{\rm coll}}(E_{\rm T}; \text{correlated})}{Y_{N_{\rm coll}}(\text{uncorrelated})}$$

Data-driven calculation:

Subtract "extra" FCal energy from p+Pb event-by-event Bias correction = ratios of w/o and w/ FCal energy subtraction.

arXiv:1507.06232

1.3

ATLAS

p+Pb 2013, $L_{int} = 29 \text{ nb}^{-1}$

 $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Z Boson Scaling in *p*+Pb

arXiv:1507.06232

Z boson per-event yield divided by $\langle N_{coll} \rangle$ vs. $\langle N_{part} \rangle$

 In the view of models: Yields may or may not be centrality dependent, depending on the model employed.

 In the view of binary collision scaling: Glauber model appears constant with centrality bias correction applied.

Quarkonia in *p*+Pb

ATLAS-CONF-2015-023

 2D fit to invariant mass and pseudo-proper lifetime to separate prompt production and decays from B-hadrons.

Quarkonia in *p*+Pb

ATLAS-CONF-2015-023

- 2D fit to invariant mass and pseudo-proper lifetime to separate prompt production and decays from B-hadrons.
- pp reference at 5.02 TeV is calculated from interpolating 2.76, 7 and 8 TeV data.
- Centrality dependence of R_{pPb} depends on model employed.

Qipeng Hu (USTC)

July 28, 2015 Quy Nhon, Vietnam

Use the Z boson production as a reference for the study of centrality dependence of other hard probes.

Model independent way to study centrality dependence of other hard probes.

ATLAS-CONF-2015-023

- Presented highlights of electroweak boson results in Pb+Pb and Z boson results in p+Pb
- PDF test in Pb+Pb results are limited by precisions in distinguishing models. In LHC Run 2, with a factor of 10-30 more events, we would be able to make precision measurements.
- PDF test in p+Pb by Z cross-sections shows slight enhancement in the backward (Pb-side). A weak rapidity dependence of R_{cp} is observed for most central collisions.
- The study of Z bosons in p+Pb provides insight on centrality bias. The Z boson yield are consistent with binary scaling when the Glauber model with bias corrections is used to determine <*N*_{coll}>.

pp Ridge

The proton-nucleon center of mass (CM) frame has a shift of 0.465 in rapidity in the proton beam direction.

y*: CM rapidity being positive in forward (proton beam direction).

p+Pb collision beam configuration

Glauber and GGCF models

To model *N*_{part} distribution we used:

- standard Glauber with σ_{NN} cross section = 70±5mb
- Glauber-Gribov color fluctuation models, with $< \sigma_{NN} > = 70 \pm 5$ mb

In GGCF model:

- $\sigma_{\rm tot}$ is considered frozen for each event
- parameter Ω controls the amount of fluctuations ($\Omega = 5 \omega_{\sigma}$)
- Ω is extracted from experimental data: 0.55 and 1.01

$$P_h(\sigma_{\text{tot}}) = \rho \frac{\sigma_{\text{tot}}}{\sigma_{\text{tot}} + \sigma_0} exp \left\{ -\frac{(\sigma_{\text{tot}}/\sigma_0 - 1)^2)}{\Omega^2} \right\}$$

Qipeng Hu (USTC)

July 28, 2015 Quy Nhon, Vietnam

