Has Saturation Found Its Smoking Gun?

David Zaslavsky

Central China Normal University

31 July 2015

Prepared for Réncontres du Vietnam 2015

Theorem (Hinchcliffe's Rule)

Any headline that ends in a question mark can be answered by the word **NO**.

Wikipedia: Betteridge's law of headlines

Has Saturation Found Its Smoking Gun?

The Saturation Problem Initial State

The Saturation Problem Structure of Protons and Nuclei

The Saturation Problem Structure of Protons and Nuclei

Saturation regime: gluon self-interactions become important

The Saturation Problem Why pA?

Saturation regime is

$$Q^2 \lesssim Q_s^2 = c A^{1/3} Q_0^2 \left(\frac{x_0}{x}\right)^{\lambda}$$

- Heavy ions (large A) make saturation more accessible
- Light projectiles (protons) prevent QGP and medium effects

The Saturation Problem Why pA?

Saturation regime is

$$Q^2 \lesssim Q_s^2 = cA^{1/3}Q_0^2 \left(\frac{x_0}{x}\right)^{\lambda}$$

- Heavy ions (large A) make saturation more accessible
- Light projectiles (protons) prevent QGP and medium effects

Calculating Inclusive Hadron Production

Factorization

k_T factorization

- Central rapidity $Y\sim 0$
- $x_p, x_g \sim 0.1$
- Projectile and target treated in same model

Hybrid model

- $\bullet~{\rm Forward}$ rapidity $Y\sim 3~{\rm to}~6$
- $x_p \gg x_g \sim 10^{-3}$
- Projectile treated in parton model
- Target treated as color glass condensate
- Suitable for saturation regime

Calculating Inclusive Hadron Production

Factorization

k_T factorization

- Central rapidity $Y \sim 0$
- $x_p, x_g \sim 0.1$
- Projectile and target treated in same model

Hybrid model

- $\bullet~{\rm Forward}$ rapidity $Y\sim 3~{\rm to}~6$
- $x_p \gg x_g \sim 10^{-3}$
- Projectile treated in parton model
- Target treated as color glass condensate
- Suitable for saturation regime

Cross section in the hybrid formalism:

$$\frac{\mathrm{d}^3\sigma}{\mathrm{d}Y\mathrm{d}^2\vec{p_{\perp}}} = \sum_i \int \frac{\mathrm{d}z}{z^2} \frac{\mathrm{d}x}{x} x f_i(x,\mu) D_{h/i}(z,\mu) F\left(x,\frac{p_{\perp}}{z}\right) \mathcal{P}(\xi)(\ldots)$$

- Parton distribution (initial state projectile)
- Gluon distribution (initial state target)
- Fragmentation function (final state)
- Kinematic factors

Calculating Inclusive Hadron Production

History of the pA Calculation

• Dumitru and Jalilian-Marian (2002)

- Dumitru, Hayashigaki, and Jalilian-Marian (2006)
- Fujii et al. (2011)
- Albacete et al. (2013)
- Rezaeian (2013)
- Staśto, Xiao, and Zaslavsky (2014)
- Kang, Vitev, and Xing (2014)
- Staśto, Xiao, Yuan, et al. (2014)
- Altinoluk et al. (2014)
- Watanabe et al. (2015)

First Calculation

Dumitru and Jalilian-Marian (2002)

First calculation of inclusive cross section No numerical results

Calculating Inclusive Hadron Production » Leading Order First Numerical Results

Dumitru, Hayashigaki, and Jalilian-Marian (2006)

Prefactor K = 1.6

Incorporating rcBK

Fujii et al. (2011)

 $\label{eq:prefactor} \begin{array}{l} {\rm Prefactor} \ K = 1.5 \ {\rm for} \ {\rm charged} \ {\rm particles} \\ K = 0.5 \ {\rm for} \ {\rm neutral} \ {\rm particles} \end{array}$

Inelastic Diagrams

Leading:

Next-to-leading:

Inelastic NLO Terms

Albacete et al. (2013)

Prefactor K = 1 for charged hadrons K = 0.4 for neutral hadrons

Impact Parameter-Dependent CGC

Rezaeian (2013)

of 30

No yield predictions

Has Saturation Found Its Smoking Gun?

Calculating Inclusive Hadron Production » Next to Leading Order

NLO Diagrams

Leading:

Next-to-leading:

13 of 30

Staśto, Xiao, and Zaslavsky (2014)

Includes virtual corrections K = 1

BRAHMS $\eta = 3.2$

Calculating Inclusive Hadron Production » Additional NLO Corrections

Rapidity Correction

15 of 30

Kang, Vitev, and Xing (2014)

Rapidity correction (believed unphysical) (by us)

Calculating Inclusive Hadron Production » Additional NLO Corrections Matching to Collinear

Staśto, Xiao, Yuan, et al. (2014)

BRAHMS $\eta = 3.2$

Primitive kinematical constraint

more on constraints: Beuf 2014.

Has Saturation Found Its Smoking Gun?

loffe Time

No numerical results

Watanabe et al. (2015)

Kinematical constraint First LHC numerical results

The Kinematical Constraint

Kinematical Constraint

Constraint:

$$\xi \le 1 - \frac{l_\perp^2}{x_p s}$$

figure adapted from Watanabe et al. 2015.

Has Saturation Found Its Smoking Gun?

David Zaslavsky — Central China Normal University

Constraint:

$$\xi \le 1 - \frac{l_\perp^2}{x_p s}$$

then

Result:

$$\frac{\mathrm{d}^3\sigma}{\mathrm{d}Y\mathrm{d}^2p_\perp} = \mathsf{LO} + \mathsf{NLO} + \frac{L_q}{L_q} + \frac{L_g}{L_q}$$

Watanabe et al. 2015.

Has Saturation Found Its Smoking Gun?

- Remove singularities
- Compute Fourier integrals
- Reduce numerical error

Removing Singularities

Numerical Adaptation

Eliminate delta functions and plus prescriptions

$$\begin{split} \int_{\tau}^{1} \mathrm{d}z \int_{\frac{\tau}{z}}^{1} \mathrm{d}\xi \bigg[\frac{F_{s}(z,\xi)}{(1-\xi)_{+}} + F_{n}(z,\xi) + F_{d}(z,\xi)\delta(1-\xi) \bigg] \\ &= \int_{\tau}^{1} \mathrm{d}z \int_{\tau}^{1} \mathrm{d}y \frac{z-\tau}{z(1-\tau)} \bigg[\frac{F_{s}(z,\xi) - F_{s}(z,1)}{1-\xi} + F_{n}(z,\xi) \bigg] \\ &+ \int_{\tau}^{1} \mathrm{d}z \bigg[F_{s}(z,1) \ln\bigg(1-\frac{\tau}{z}\bigg) + F_{d}(z,1) \bigg] \end{split}$$

$$\begin{split} \delta^2(\vec{r}_{\perp}) \int \frac{\mathrm{d}^2 \vec{r}'_{\perp}}{r'_{\perp}^2} e^{i\vec{k}_{\perp} \cdot \vec{r}'_{\perp}} &- \frac{1}{r_{\perp}^2} e^{-i\xi'\vec{k}_{\perp} \cdot \vec{r}_{\perp}} \\ &= \frac{1}{4\pi} \int \mathrm{d}^2 \vec{k}'_{\perp} e^{-i\vec{k}'_{\perp} \cdot \vec{r}_{\perp}} \ln \frac{(\vec{k}'_{\perp} - \xi'\vec{k}_{\perp})^2}{k_{\perp}^2} \end{split}$$

Has Saturation Found Its Smoking Gun?

23 of 30

Fourier integrals are highly imprecise

$$\int \mathrm{d}^2 \vec{r}_\perp S_Y^{(2)}(r_\perp) e^{i\vec{k}_\perp \cdot \vec{r}_\perp}(\ldots)$$
$$\int \mathrm{d}^2 \vec{s}_\perp S_Y^{(4)}(r_\perp, s_\perp, t_\perp) e^{i\vec{k}_\perp \cdot \vec{r}_\perp}(\ldots)$$

Easiest solution: transform to momentum space

$$F(k_{\perp}) = \frac{1}{(2\pi)^2} \iint d^2 \vec{r}_{\perp} S_Y^{(2)}(r_{\perp}) e^{i\vec{k}_{\perp} \cdot \vec{r}_{\perp}} = \frac{1}{2\pi} \int_0^\infty dr_{\perp} S_Y^{(2)}(r_{\perp}) J_0(k_{\perp}r_{\perp})$$

and compute F directly

Fourier integrals are highly imprecise

$$\int \mathrm{d}^2 \vec{r}_\perp S_Y^{(2)}(r_\perp) e^{i\vec{k}_\perp \cdot \vec{r}_\perp}(\ldots)$$
$$\int \mathrm{d}^2 \vec{s}_\perp S_Y^{(4)}(r_\perp, s_\perp, t_\perp) e^{i\vec{k}_\perp \cdot \vec{r}_\perp}(\ldots)$$

Alternate solution: algorithms for direct evaluation of multidimensional Fourier integrals (not explored)

Numerical Adaptation New Fourier Transforms

$$\begin{split} \int \frac{\mathrm{d}^2 x_\perp}{(2\pi)^2} S(x_\perp) \ln \frac{c_0^2}{x_\perp^2 \mu^2} e^{-ik_\perp \cdot x_\perp} \\ &= \frac{1}{\pi} \int \frac{\mathrm{d}^2 \vec{l_\perp}}{l_\perp^2} \left[F(\vec{k_\perp} + \vec{l_\perp}) - J_0 \left(\frac{c_0}{\mu} l_\perp\right) F(k_\perp) \right] \end{split}$$

$$\begin{split} \int \frac{\mathrm{d}^2 r_{\perp}}{(2\pi)^2} S(r_{\perp}) \left(\ln \frac{r_{\perp}^2 k_{\perp}^2}{c_0^2} \right)^2 e^{-ik_{\perp} \cdot r_{\perp}} \\ &= \frac{2}{\pi} \int \frac{\mathrm{d}^2 \vec{l_{\perp}}}{l_{\perp}^2} \ln \frac{k_{\perp}^2}{l_{\perp}^2} \left[\theta(k_{\perp} - l_{\perp}) F(k_{\perp}) - F(\vec{k_{\perp}} + \vec{l_{\perp}}) \right] \end{split}$$

Watanabe et al. 2015.

Has Saturation Found Its Smoking Gun?

- Inaccuracy of Fourier integrals
- Monte Carlo statistical error
- Cancellation of large terms

Multiple runs to improve statistics

Numerical Adaptation Remaining Evaluation Errors

- Inaccuracy of Fourier integrals
- Monte Carlo statistical error
- Cancellation of large terms

Two parallel implementations of selected parts:

- Mathematica, for rapid prototyping
- C++, for execution speed

 $L_a(k_{\perp})$ MMA pos

 $L_a(k_{\perp})$ MMA mom C++ mom (GBW) $\alpha_{*}N_{*}/(\pi^{2}k^{4})$

DOODOOO

abs diff from pos space

rel diff from pos space

 10°

 10^{-2}

 10^{-4}

0

2

1

 $\mathbf{5}$

-5

 $\cdot 10^{-2}$

2

 $\overline{2}$

of 30

Has Saturation Found Its Smoking Gun?

David Zaslavsky — Central China Normal University

 k_{\perp}/Q_s

RHIC Results

New terms improve matching at low p_{\perp}

data: Arsene et al. 2004; Adams et al. 2006.

plots: Staśto, Xiao, and Zaslavsky 2014; Watanabe et al. 2015.

Has Saturation Found Its Smoking Gun?

David Zaslavsky — Central China Normal University

RHIC Results

26 of 30

New terms improve matching at low p_{\perp}

data: Arsene et al. 2004; Adams et al. 2006.

plots: Staśto, Xiao, and Zaslavsky 2014; Watanabe et al. 2015.

Has Saturation Found Its Smoking Gun?

David Zaslavsky — Central China Normal University

LHC Results

rcBK calculation matches neatly up to $p_\perp \approx 6\,{\rm GeV}$

data: Milov 2014. plots: Watanabe et al. 2015.

Has Saturation Found Its Smoking Gun?

David Zaslavsky - Central China Normal University

Importance of Higher Rapidity

Higher rapidity alters low- p_{\perp} result

of 30

Importance of Higher Rapidity

Higher rapidity alters low- p_{\perp} result

of 30

Importance of Higher Rapidity

Higher rapidity alters low- p_{\perp} result

of 30

Conclusion Summary

Latest result

- First complete numerical implementation of the NLO $pA \rightarrow h + X$ cross section (no, really this time, we promise)
- First numerical results at LHC parameters

Potentially sensitive probe of small-x gluon distribution

Future work:

- Investigate hotel bar
- Investigate higher order corrections or resummation
- Use data to tune models of gluon distribution

Critical step

More forward-rapidity data from LHC experiments

Section 7

Supplemental Slides

Supplemental Slides Derivation of the Kinematical Constraint

figure adapted from Watanabe et al. 2015.

Has Saturation Found Its Smoking Gun?

Supplemental Slides The Beam Direction Problem

figure adapted from Watanabe et al. 2015.

LHC Results at Central Rapidity

data: Milov 2014; Abelev et al. 2013.

plots: Watanabe et al. 2015.

Has Saturation Found Its Smoking Gun?

3

Supplemental Slides LHC Predictions for Run II

