2nd Conference on Heavy Ion Collisions in the LHC Era and Beyond

Direct Photon v2 Puzzle In Heavy Ion Collisions

Fu-Ming Liu -- Central China Normal University

Current collaborators:

Sheng-Xu Liu -- Central China Normal University Klaus Werner -- Subatech, Nantes, France Meng Yue -- Central China Normal University

Rencontres du Vienam, Quy Nhon, 26th Jul ~ 1st Aug, 2015

Outline

- Motivations: Data status of direct photons and dileptons Puzzles from Data/model comparisons
- **Our Results** of photons and dileptons from AuAu 200GeV (two hydro models)
- Calculation Approach for photons + dileptons, hydro models
- Conclusions and outlook

Direct Photons

PHENIX, Phy.Rev.Lett.104, 132301 (2010)

Direct Photons

PHENIX, Phys. Rev. Lett. 109, 122302 (2012)

Puzzle of Direct photons

Model comparisons by Stefan Bathe(PHENIX) in HP2015, McGill, June

Fireball Model

thermal + prompt

Thermaly p_T spectra, directy v₂,v₃, Au+Au@200GeV, 20-40%

- pQCD+AMY QGP+HG (p spectral function)
- van Hees, Gale, Rapp, PRC 84, 054906(2011)
- Blue shift of HG spectra included
- yield and v₂ only slightly low

PHSD Transport

- Parton-Hadron String Dynamics
- Linnyk, Cassing,
 Bratkovskaya, PRC 89,
 034908 (2014)
- Hadronic bremsstrahlung
- Thermal QGP photons included
- Yield well described

v₂ low

Hydro

thermal only

thermal + prompt

Thermaly p_r spectra, directy v₂,v₃, Au+Au@200GeV, 20-40%

- 3+1D viscous hydro
- No pre-flow
- Shen, Heinz, Paquet, Kozlov, Gale, PRC 91, 024908 (2015)
- Both yield and v₂ low
- Better description with pre-flow→ see J.-F. Paquet's talk

Semi-QGP

thermal only

thermal + prompt

Thermaly p_r spectra, directy v₂,v₃, Au+Au@200GeV, 20-40%

- semi-QGP+HG+pQCD
- Gale et al., PRL114, 072301(2015) + private communication
- semi-QGP: reduced partonic ndf near T_c
- But transition to hadronic ndf?
- Yield fairly well described

 $v_2, v_3 low$

Slow Chemical Freeze-Out

- Monnai, PRC90, 021901(2014)
- Slow chemical freeze-out, more time to develop flow
- Neither pQCD nor HG contribution included

Magnetic Field

thermal + prompt

Thermaly p_r spectra, directy v₂,v₃, Au+Au@200GeV, 20-40% (GeV⁻³) PRL109, 202303 0.2 PHĚENIX preliminary onformal Anomaly 0.15 Conventional PRD89, 026013 0.1 10 0.05 10⁻² V₃ PHĚENIX 0.2 10⁻³ Calorimeter 0.15 Conversion 10-4 0.1 10⁻⁵ 0.05 PRC 91, 064904 PHENIX 10-6 3 2 3 0 2 p_{_} (GeV/c) p_{_} (GeV/c)

thermal only

 Initial strong magnetic field produces anisotropy of photon emission

 Baser, Kharzeev, Skokov, PRL109, 202303(2012),

- Weak coupling
- Müller, Wu, Yan, PRD 89, 026013(2014)
 - strong coupling
- Only source that gives nonzero v₂ at p_T = 0
- No other sources included

No v₃

Our Results

AuAu @ 200GeV, hadron data constrain

- 1. Understand the spectra of direct photons with Hirano's hydro. FML, T.Hirano, K.Werner, Y.Zhu, Phys.Rev.C79 (2009) 014905.
- 2. The study of thermal photon v2 with Hirano's hydro. FML, T.Hirano, K.Werner, Y.Zhu, Phys.Rev.C80 (2009) 034905.
- Try to explain the large v2 of direct photons with Hirano's hydro, With delayed QGP formation.
 FML, Shengxu Liu, Phys.Rev.C89 (2014) 3, 034906.
- Explain the large photon v2 and predict v2 of dileptons with EPOS3. (Recent)

Note: No modification to any hydro parameter after hadron data are explained, for any of the upper hydro models.

1. Explain Photon Spectrum

FML, T.Hirano, K.Werner, Y.Zhu, Phys.Rev.C79 (2009) 014905.

What we learn:

Photon spectra are explained with hadron date constrained hydro! Understand the sources of direct photons. Roughly Prompt + thermal!

2. Study thermal photon v2

FML, T.Hirano, K.Werner, Y.Zhu, Phys.Rev.C80 (2009) 034905.

What we learn: 1. Centrality dependence tells us, Big $v_2^H = \frac{v_x^2 - v_y^2}{v_x^2 + v_y^2}$, big photon v2.

2. We can use this thermal photon v2 to get direct photon v2, red lines in next slide.

3. Delayed QGP formation

What we learn:

- The red lines from last calculation are much lower than PHENIX measured photon v2. Similar results from other groups! The photon v2 puzzle!
- 2. Assume that **QGP formation is later than thermalization**, calculated photon v2 can go close to data!

Delayed QGP formation means

- 1. A gluon-dominant system exists in the early stage of HIC.
- 2. This system is very hot, but emits very little photons and leptons, because gamma line doesn't directly link to gluon line.
- 3. With the duality of energy and mass, this system provides us a possible solution to the puzzule of the dark such as black holes, dark matter/E.

FML. arXiv:1305.5284

Be cautious!

Question: Is it the **only** solution to the photon v2 puzzle? How about other EM probes, ie, dileptons?

4. Recent results with EPOS3

Dileptons with EPOS3

Thermal dilepton v2

v2, v3, v4, v5 vs. centrality

Calculation approach

1. Sources of direct photons and dileptons

2. Hydro evolution for thermal contrinution

3. Initial Condition (IC) for hydro evolution

Main Sources of Direct photons

Based on High pt direct photon data

1. Prompt photons

$$\frac{dS^{\text{Prompt}}}{dyd^2p_t} = \bigotimes_{ab}^{\circ} dx_a dx_b G_{a/A}(x_a, M^2) G_{b/B}(x_b, M^2) \frac{\hat{s}}{\rho} \frac{dS}{d\hat{t}} (ab \rightarrow cd) d(\hat{s} + \hat{t} + \hat{u})$$
$$+ \bigotimes_{c=q,g}^{\circ} \grave{0} dz_c \frac{dS^c}{dyd^2p_t} \frac{1}{z_c^2} D_{g/c}^0(z_c, Q^2)$$

Dominant at high pt, zero V2.

2. Thermal photons

$$\frac{dN^{\text{thermal}}}{dyd^2p_t} = \dot{0} d^4x G_{\text{thermal}}(E^*,T), \quad E^* = p^m u_m$$

Dominate at low pt.

Photon emission rates: QGP phase: AMY2001 HG phase: TRG2004

Dileptons from the same system

Cocktail

Sources of dileptons:

- 1. Drell-Yan
- 2. Light meson decay
- 3. Heavy flavor decay

4. Thermal contribution (QGP + HG)

$$M^{2} = (E_{1} + E_{2})^{2} - (\vec{p}_{1} + \vec{p}_{2})^{2}$$
$$\frac{dN_{l_{+}l_{-}}}{dM} = \int d^{4}x \frac{Md^{3}q}{q^{0}} \frac{dN_{l_{+}l_{-}}}{d^{4}xd^{4}q}$$

Plasma in Hirano's hydro

 $\mathcal{E}, p, u^{\mu}, s, B, ... (\tau, x, y, z)$ described with 3+1D ideal hydrodynamics

Initial Condition Glauber model, Wood-Saxon, initial time

Evolution: 3D ideal hydrodynamic equation $\partial_{\mu} T^{\mu\nu} = 0$

EoS: 1st order phase transition at $T_c = 170$ MeV QGP phase: 3 flavor free Q & G gas HG phase: hadronic gas PCE

Freeze-out: $\boldsymbol{\varepsilon}^{th} = 0.08 \text{GeV}/\text{fm}^3$ or $\boldsymbol{T}^{th} \sim 100 \text{MeV}$

Glauber IC in Hirano's hydro

Energy density or entropy distribution in the space:

$$\begin{aligned} \frac{dS}{d\eta_s \, d^2 x_\perp} &= \frac{C}{1+\alpha} \theta \left(Y_b - |\eta_s| \right) f^{pp}(\eta_s) \\ &\times \left[\alpha \left(\frac{Y_b - \eta_s}{Y_b} \frac{dN_{\text{part}}^A}{d^2 x_\perp} + \frac{Y_b + \eta_s}{Y_b} \frac{dN_{\text{part}}^B}{d^2 x_\perp} \right) \\ &+ (1-\alpha) \frac{dN_{\text{coll}}}{d^2 x_\perp} \right], \end{aligned}$$

Parameterized rapidity distribution in *pp* collisions

$$f^{pp}(\eta_s) = \exp\left[-\theta \left(|\eta_s| - \Delta \eta\right) \frac{(|\eta_s| - \Delta \eta)^2}{\sigma_{\eta}^2}\right]$$

Hirano's hydro used since 2007

Many Groups developed Glauber IC:

+ fluctuations: MC-Glauber, ...

+ PDF constrains: IP-Glasma,...

+ **viscosity** can not make photon v2 so big

Hadron data constraints

 \rightarrow Still, **under-predicted** photon v2

EPOS3 IC

$$\operatorname{cut}\operatorname{Pom}: G = \frac{1}{2\hat{s}} 2\operatorname{Im}\left\{\mathcal{FT}\left\{T\right\}\right\}(\hat{s}, b), \ T = i\hat{s} \,\sigma_{hard}(\hat{s}) \,\exp(R_{hard}^2 t)$$

EPOS3 IC

For pp, pA, AA: А $\sigma^{\text{tot}} = \int d^2b \int \prod_{i=1}^{A} d^2b_i^A \, dz_i^A \, \rho_A(\sqrt{(b_i^A)^2 + (z_i^A)^2})$ $\prod^{B} d^{2}b_{j}^{B} dz_{j}^{B} \rho_{B}(\sqrt{(b_{j}^{B})^{2} + (z_{j}^{B})^{2}})$ i=1 $\sum_{m_1 l_1} \dots \sum_{m_{AB} l_{AB}} (1 - \delta_{0\Sigma m_k}) \int \prod_{k=1}^{AB} \left(\prod_{\mu=1}^{m_k} dx_{k,\mu}^+ dx_{k,\mu}^- \prod_{\lambda=1}^{l_k} d\tilde{x}_{k,\lambda}^+ d\tilde{x}_{k,\lambda}^- \right) \bigg\}$ $\prod_{k=1}^{AB} \left(\frac{1}{m_k!} \frac{1}{l_k!} \prod_{k=1}^{m_k} G(x_{k,\mu}^+, x_{k,\mu}^-, s, |\vec{b} + \vec{b}_{\pi(k)}^A - \vec{b}_{\tau(k)}^B|) \right)$ $\prod_{k=1}^{l_k} -G(\tilde{x}_{k,\lambda}^+, \tilde{x}_{k,\lambda}^-, s, |\vec{b} + \vec{b}_{\pi(k)}^A - \vec{b}_{\tau(k)}^B|) \right)$ $\lambda = 1$ $\prod_{i=1}^{A} \left(1 - \sum_{\pi(k)=i} x_{k,\mu,i}^{+} - \sum_{\pi(k)=i} \tilde{x}_{k,\lambda}^{+} \right)^{\alpha} \prod_{j=1}^{B} \left(1 - \sum_{\tau(k)=i} x_{k,\mu}^{-} - \sum_{\tau(k)=i} \tilde{x}_{k,\lambda}^{-} \right)^{\alpha} \right\}$

v2, v3, v4 ... e2 e3 e4

Conclusions and Outlook

1. Photon v2 puzzle in heavy ion collisions is important.

We may understand the dark with lights.

- EPOS reproduces spectra/v2/v3 of charged hadrons, direct photons.
- 3. It predicts large v2 of thermal dileptons. Centrality dependence occurs not only to v2 but also v3,v4, v5.
- 4. More insights to v2 v3 v4? How artificial hydro ICs?

Thank you for your attention!

Delayed QGP formation

- pre-equilibrium hydrodynamic expansio hadronizatio
- (i) At $\tau = 0$, prompt photons are counted according to the next-to-leading-order QCD.
- (ii) At $0 < \tau \leq \tau_0$, we have $\xi = 0$ and photon emission rate $\Gamma = 0$.
- (iii) At $\tau_0 < \tau < \tau_{QGP}$, emission is estimated with $\Gamma^{low} < \Gamma < \Gamma^{up}$.
- (iv) For $\tau \ge \tau_{QGP}$, the thermal photon emission rate covers

QGP phase-- AMY2001 HG phase -- TRG2004

Photon emission rate in non-eq.

Quark distribution
$$f \sim \chi f_0$$
 quark fugacity ξ

Photon emission rate suppressed by ξ^n

$$\Gamma^{\text{low}} = \xi \cdot \Gamma_{\text{Compton}} + \xi^2 \cdot \Gamma_{\text{annihilation}}$$

$$\Gamma^{\text{up}} = \xi \cdot \Gamma_{\text{Compton}} + \xi^2 \cdot (\Gamma_{\text{AMY}} - \Gamma_{\text{Compton}})$$

EoS
$$\epsilon = (d_g + \xi d_q) \frac{\pi^2}{30} T^4$$

Is delayed QGP formation OK for explaining hadron data?

Yes, because

- 1) QGP is formed before hadrons freeze-out : particle yields, v2/n scaling...
- 2) Before QGP formation, dynamical EoS e=e(P) remains approximately the same, no matter the value of quark fugacity.

Dilepton Emission Rate

$$\frac{dN_{I^{+}I^{-}}}{d\omega d^{3}p} = C_{em} \frac{\alpha_{em}^{2}}{6\pi^{3}} \frac{\rho_{V}(\omega, \vec{p}, T)}{(\omega^{2} - \vec{p}^{2})(e^{\omega/T} - 1)}$$
$$\Gamma_{V}(\mathcal{W}, \vec{p}, T)$$

H. T. Ding, et al. Phys. Rev. D 83, 034504 (2011).

vector spectra function when p=0.

$$\frac{dR_{q\bar{q}\to ee}}{d^4q} = \frac{\alpha^2}{4\pi^4} f^B(q_0;T) \left(\sum e_q^2\right) \left(1 + \frac{2T}{q} \ln\left[\frac{1+x_+}{1+x_-}\right] + 2\pi\alpha_s \frac{T^2}{M^2} KF(M^2) \ln(1 + \frac{2.912}{4\pi\alpha_s} \frac{q_0}{T})\right)$$

R. Rapp, Adv.High Energy Phys. 2013 (2013) 148253, arXiv:1304.2309.

$$\frac{d^4 R_V}{d^4 q} = -\frac{\alpha^2}{\pi^3} \frac{L(M)}{M^2} \frac{m_V^4}{g_v^2} \left[\frac{\text{Im} D_V^R}{e^{\frac{q_0}{T}} - 1} \right]$$

J. I. Kapusta and C. Gale (2006)

V. L. Eletsky, et al. Phys. Rev. C 64, 035202 (2001).G. Vujanovic, et al. Phys. Rev. C 89 (2014) 034904.

Spectrum, v2, v3, v4...

$$\frac{dN}{df} = \frac{N \stackrel{\acute{e}}{e}}{2p \stackrel{\acute{e}}{e}} + \stackrel{\acute{a}}{a} 2v_n \cos n(f - y_n) \stackrel{\acute{u}}{u}$$

• In E-b-E case, y_n vary with event, pt and PID. However, it is easy to show $\langle \cos nf \rangle = v_n \cos ny_n$ $\langle \sin nf \rangle = v_n \sin ny_n$

 $\langle \cdots \rangle$: average over all particles in each event

- So we can get $v_n = \sqrt{\langle \cos nf \rangle^2 + \langle \sin nf \rangle^2}$
- Then take event average.