
sTGC Trigger Data Serializer 
J. Chapman, T. Dai, L. Guan, Z. Sang, J. Wang, B. Zhou, J. Zhu  

University of Michigan, Ann Arbor, MI, 48109 

1. Introduction 

The sTGC trigger data serializer (TDS) ASIC chip is responsible for the preparation of trigger data for both 
pads and strips with the additional task of serializing data for transmission to the circuits on the rim of the 
nSW detector. The chip is designed to have two different configurations, one to deal with sTGC pads 
(denoted as “pad-TDS” here) and the other one to deal with sTGC strips (denoted as “strip-TDS” here). 
Physical pads are staggered by 1/2 pad in both directions in order to get even smaller area logical pads to 
reduce the amount of strip data to be transmitted on each bunch crossing, while strips are used to determine 
the sTGC segment direction with an angular resolution less than 1 mrad. Strip pulse heights are captured 
by the VMM front-end ASD chip and sent to the strip-TDS chip. Meanwhile discriminated pad signals are 
assigned to their bunch crossing, and the binary pattern of hit pads is serialized by the pad-TDS and sent to 
the pad tower electronics on the rim of the nSW. Three-out-of-four coincidences are made in pad towers in 
each sTGC quadruplet; these are then combined to choose a band of strips in each strip-TDS chip to be 
readout. The strip-TDS chip formats and serializes the pulse heights of the selected strips and the BCID 
and pad road information to the router board located on the rim of the nSW detector. Each router board 
receives the output from up to nine TDS chips and sends the data to USA15 via optical fibers. Hit centroids 
are found for each of the eight layers and sTGC track segments are built using centroids found from eight 
layers. The layout of the sTGC trigger logic is shown in Fig. 1. 

 

Figure 1. Layout of the sTGC trigger logic. 



For each pad, we need to send out 1-bit to indicate whether the pad is fired or not; while for each strip, we 
need to send out 6-bit to indicate the total charge deposited on that strip. At the same time, we also send 
out the BCID, roadID and phiID for the pad road. Each pad road will cover an area of at most 14 strips, and 
we will send out the charge information on all 15 strips (with edge effect considered) underneath the road 
even though most of them will have zero charge. 

The TDS chip will be implemented using the IBM 130 nm CMOS process and produced together with the 
VMM chips so that the fabrication of both chips can share wafers and masks. The technical challenging for 
the design of the TDS chip are: (1) high speed (need to serialize the strip data to the router board with an 
output rate of 4.8 Gbps); (2) low latency (need to have a latency of 100 - 125 ns after it receives the road 
information from the pad tower electronics); (3) large number of I/O pins (need to deal with 128 VMM 
channels with differential outputs and in total about 400 pins are expected); (4) low power consumption 
(need to have less than 1 watt power consumption per chip). 

The connections, inputs and outputs for pad-TDS and strip-TDS can be summarized in Fig. 2.  

 

Figure 2: Inputs and outputs for pad-TDS and strip-TDS. 

2. Strip TDS ASIC 

2.1 Design 

The architecture of the strip-TDS chip is shown in Fig. 3. The design can be divided into three major parts: 
VMM interface, Preprocessor, and Serialization. The VMM interface mainly reads in the VMM output data 
and stores it in buffers awaiting track road information from the pad trigger logic. The Preprocessor mainly 
performs the BCID and pad trigger matching and select strips within the pad road for transmission to the 
router. The Serialization part mainly prepares the trigger data and serializes it for transmission to the router. 

For each strip, the VMM ASD chip provides a 6-bit measurement of the charge deposited that is sent serially 
to the strip-TDS. These 6-bits of charge follow the single bit that defines a strip with data. The signal from 
each VMM output channel is deserialized first and the pulse height information is stored in a ring register 
together with BCID. Time variations due to different strip and cable lengths will be compensated with 



programmable delay circuitry at each TDS with a precision of 3.125 to 6.25 ns. Time variations of the 
VMM bit clock will be compensated with programmable delay circuitry with a precision of 0.78 ns. Since 
the VMM timing window for the detector signal is likely to be 30 ns, two BCID counters are used with a 
relative time delay of 5 ns between their incoming clocks (the delay time is adjustable). The results from 
these two counters are compared, and the BCID from the first counter is used while a BCID flag is set to 0 
or 1 depending on whether both counters provide the same BCID or not. The ring register stores the charge 
information for up to four hits per channel while waiting for pad trigger data from the pad tower electronics. 
The pad trigger decoder circuity decodes pad trigger data received and obtains BCID, band-ID, phi-ID and 
the starting strip address. 

Given the size of logical pads, we will readout data from 15 strips starting from the starting strip. BCID and 
band-ID matching tasks are then performed and only matched fired strips within the pad trigger road are 
selected. Thirty-two 4-to-1 priority sequencers are used to read the data into FIFOs. Input channels to each 
sequencer are arranged so that adjacent fired strips from a single muon hit will be processed by several 
sequencers in parallel, and each sequencer only needs to deal with up to one fired channel. Data from all 
selected strips within the trigger road are serialized and send to the router board via twinax cables. 

 

Figure 3: Layout of the strip-TDS chip. 

2.2 Serializer-Core 

The circuit for the final serialization needs to handle an output rate of 4.8 Gbps and has to be layout by 
hand, while the logic circuits before that can be implemented using the Verilog HDL code and later 



converted to silicon using the standard digital cells of the IBM 130nm CMOS process. The serializer-core 
circuit is a crucial component of the TDS chip and is modified from the existing CERN GBTx serializer. 
The layout of the CERN design is shown in Fig. 4a. It consists of a 120-bit input register, three 40-bit shift 
registers, a Phase-Lock Loop (PLL) with a 120-bit feedback divider, and a 3:1 high speed multiplexer. The 
serializer operation is based on the division of the 120-bit frame into three 40-bit words which are serialized 
at 1.6 Gbps and then time division multiplexed to form the final 4.8 Gbps serial bit stream. Triple Modular 
Redundancy (TMR) is used in the feed-back divider of the PLL to mitigate SEUs. To reduce the overall 
latency and to be consistent with the 160 MHz clock used for the whole chip, we modified the existing 
serializer to loading 30 bits at a rate of 160 MHz instead of loading 120 bits at a rate of 40 MHz. In order 
to have the fabrication together with the VMM chip, we also modified the metalization technology from 
LM62 to DM323. The layout of the modified serializer is shown in Fig. 4b. The serializer-core chip has 
been produced and tested. All preliminary results indicate that it meets our expectations. The eye diagrams 
for the serializer-core chip are shown in Fig. 5 at 4.5 Gbps and 5.4 Gbps. The latency is found to be less 
than 7 ns including all trace differences on the test board and FPGA buffer delay. The simulation indicates 
the latency for the serializer part is 4 ns.  

 
Figure 4: (a) Layout of the CERN GBTx serializer. (b) Layout of the serializer-core chip. 

 

Figure 5: Eye diagrams of the serializer-core chip at 4.5 Gbps (Left) and 5.4 Gbps (Right).  

2.3 Interface to the VMM chip 



Each strip-TDS reads in 128 VMM channels plus two neighboring channels from each of the two adjacent 
TDSs in order to remove the TDS edge effect. The SLVS driver developed by CERN is used to handle the 
VMM output signal. The SLVS driver has an embedded 100-Ohm termination resistor, and can accept a 
wide common-mode voltage from 0.2 V to 1.2 V with a typical swing of ± 200 mV. The 6-bit charge from 
VMM is sampled with dual edges of a 160 MHz clock. The 160 MHz clock is provided by the ePLL circuit 
inside the strip-TDS, this will guarantee that the clock used by the TDS to sample the VMM outputs and 
the clock used by the VMM to send the output have the same phase. The 160 MHz clock can also be 
adjusted to different phases with a programmable phase shift at a step of 400 ps.  

TDS will assign BCID based on the first edge from the VMM for the VMM strip signal peaking time. There 
will be a 12-bit BCID phase offset for each TDS that can be configured using the I2C interface. Since the 
signal routing lengths for all strips routed to the same strip-TDS have small variations, we assume no need 
to adjust the signal arrival time for different strips on one strip-TDS chip.  

The matching window of each TDS is programmable, from 25 ns to 50 ns with a step of 6.25 ns, to 
compensate for the signal processing delays to and through the VMM chip.  In case of the matching window 
is larger than 25 ns, a BCID extension flag will be assigned. For example, when using a 31.25 ns matching 
window, a VMM hit in the first 6.25 ns of the second BC will be assigned the current BC, but will also be 
given an extension flag indicating that it might also belong to the following BCID. There is a configuration 
bit that can decide if we want to send out hits with the current BCID together with the extension bit or only 
send out hits for the current BCID. This latter choice implies that hits in the extension time receive BCID+1 
counter value. 

For each of the first 15 strips, a VMM 6-bit charge serial pattern can be generated for self-testing purpose. 

2.4 Interface to the Pad-trigger logic circuit 

The pad-trigger logic circuit located on the rim receives the pad-TDS data and perform algorithm to find 
the region of interest. The resulting pad road information is sent to the strip-TDS at the rising edge of the 
global 40 MHz clock. The area covered by each road involves about 12 - 15 strips, and we allow the strips 
inside one pad road to be readout by two strip-TDSs. There are about 90 roads per sector and thus 7 bits are 
needed to indicate the global road ID. The pad-trigger logic circuit thus needs to send out a 8th bit to indicate 
which TDS to be readout. In total the pad-trigger logic needs to use 8 bits to strip-TDS for the road ID 
information. Pad road information from the pad trigger logic is delivered to each strip-TDS via two lines 
operating at 640 Mbps each. We assume 25 ns is used to send out the data, and thus 32 bits in total for these 
two lines. The pad road information includes 5 bits phi-ID, 8 bits band-ID, and 12 bits BCID. The 
arrangement of the 16 bit info for each line is listed below: 

Line 0 “10” header 12 bits trigger BCID 2 spare bits 
Line 1 “10” header 5 bits phi ID + 8 bits band ID 1 spare bit 

In case there is no valid trigger info, the pad trigger logic will send out 0x8000 (hex) for each line. It will 
also be useful for the pad trigger logic first send out a few 0x800 for each line after powering up. This will 
help TDS to maintain the data synchronization. We assume the connection between TDS and the pad trigger 
logic for both lines are DC-coupled via LVDS. There are no needs for scrambler and descrambler. 

Each TDS will have a LUT that contains the starting channel for at most 8 roads. The address for the 
element of each LUT is the 8 bits band-ID and the content is the 7 bits starting strip address. The size of 
the LUT is 15 bits width x 8 bits depth. TMR is used to reduce SEU. With the starting strip address, TDS 
will search for a range of 17 strips (including four neighboring channels), and match the pad trigger BCID 



with the BCID of all 17 buffered hits. If the matching window is set to 25 ns, exact BCID matching is 
performed; otherwise, the BCID flag will be taken in account. For example, if the pad trigger BCID is k, 
and one strip has BCID k+1 and a valid BCID flag, this case will also be considered as a valid match and 
the data from this strip also needs to be readout.  

2.5 Interface to the router 

Depending on the firing status of the 17 strips, either the first 15 strips or the last 15 strips will be selected 
for output.  The total output data have a size of 120 bits. With header information include, the overall data 
that need to be transmitted are 150 bits. The output data includes BCID, band-ID, phi-ID, CRC and data 
from 15 strips. The total number of useful data bits is 120. We use 1010 for the overall header for both 
NULL and non-NULL packets, and use 10 to indicate non-NULL packet and 01 to indicate NULL packet. 
The total number of bits we need to send out is thus 150 and will be sent out with 5 packets with 30 bits per 
packet. The overall transmission time is 31.25 ns. The output data format is shown in Fig. 6(a). All bits 
except headers are scrambled (instead of 8b/10b conversion) to keep DC balance. We use a multiplicative 
(self-synchronizing) scrambler defined by a polynomial 1+X^39+X^58, the IEEE standard for 10 G 
Ethernet. The algorithm used for the scrambler is shown in Fig. 6(b). A 4-bit CRC with polynomial 0x9: 1 
+ x + x^4 is used. Even though 4 CRC bits are insufficient to correct errors for a total of 116 bits and will 
only be used to indicate a transmission error has occurred.  

          

 

Figure 6: (a) Output format for the strip-TDS data. Five packets with 30 bits per packet are used to send 
out non-NULL data. (b) Algorithm used for the scrambler. 

The simulated overall latency (time difference when the starting strip address has been decoded and when 
the first bit is sent out by the serializer) is found to be about 50 ns. We expect the final chip to have a slightly 
longer latency. 

To test the serial link performance, the TDS can be configured to output PRBS-31. This is useful for eye-
diagram observation and bit error evaluation of the link. 

3. Pad TDS ASIC 



The architecture of the pad-TDS chip is shown in Fig. 7. For each pad, the information from the VMM is 
nearly identical with that for strips with the difference being the presence of 6 additional bits of charge for 
the strips. A similar deserializer circuit is designed to obtain the 1-bit yes/no information from each pad. 
These information will then be scrambled and serialized to the pad trigger logic. 

 

Figure 7: Layout of the pad-TDS chip. 

The pad road data sent by the pad tower electronics to the strip-TDS are transmitted by four serial lines 
using 160 MHz clock and data bits sent at both edges of each clock. The address for the starting strip is 
assumed to be sent also. If the starting strip address is not provided, we need to add the circuilts to provide 
a look up table to convert the road ID to the starting strip address in the strip-TDS. 

The diagram for the TDS configuration and monitoring is shown in Fig. 6. For each chip, we configure 
BCID counter offset, BCID matching option (only send out charge information for strips belong to the 
current BCID, or also send out charge information for strips that belong to the current BCID plus one), 
delay time between two BCID counters, and serializer running modes etc. For each TDS input channel, we 
configure programmable delay time adjustment, and provide channel enable or disable signal etc. TMR is 
used for all these configuration bits to avoid SEUs. 

Each pad-TDS handles a total of 96 pads with SLVS input and can accept the VMM’s “LVDS” like input. 
Each pad-TDS has 12 bits of BCID offset and a configurable phase of a local 40 MHz BCID clock.  The 
phase shift precision is 6.25 ns. Each pad-TDS divides the 96 channels into 6 groups with 16 pads each. 
Each group can be configured to four different phases of the 40 MHz clock. This is mainly used to 
compensate different cable length from the pad detector to the VMM. Pad-TDS checks the presentence of 
a leading edge of the VMM pulse for each channel in each BC. A channel is marked as “yes” as long as the 
leading edge of a pulse appears in the current BC, otherwise, a “no” will be recorded. For the example 
shown below, channels 0 and 1 are fired while the rest channels are not. The “yes/no” flags of all channels 



will be sent to the pad logic every BC. Pad-TDS uses the same serializer as used by the strip-TDS. For each 
BC, we can arrange all data including headers and CRC into 120 bits. The format is listed below: 

header Pad-TDS status BCID CRC 
“1010” 96 bits “yes/no” 12 bits 8 bits 

The data except for the header bits are scrambled to keep DC-balanced. The same scrambler polynomial is 
used as the one used for the strip-TDS. Due to available space, 8 CRC bits are used. The CRC is done with 
a polynomial 0x97: 1+x+x^2+x^3+x^4+x^8. This algorithm has a HD of 4 for 112 bits of data and is 
capable to recognize all combinations of 1 bit, 2 bits, 3 bits errors, and almost all the combinations of 4 bits 
errors.  

4. Configuration and monitoring 

The TDS chips will be configured by the GBT-SCA chips using the I2C protocol, and a few important 
values will be stored in the diagnostic registers and can be readout for debugging and monitoring purposes. 
According to the requirement, we placed 240 bits parameter registers for configuration and 40 bits 
diagnostic registers inner TDS chip. Figure 8 shows the block diagram of I2C configuration part. Triple 
modular redundancy is used here.     

 

Figure 8: Block diagram of I2C configuration. 

I2C is a standard data transmission protocol used in many field. We adopt 10-bits addressing mode and 
single-byte read/write operation supported by the GBT-SCA chip. Only two bidirectional open-drain lines, 
Serial Data Line (SDA) and Serial Clock Line (SCL), pulled up with resistors are used in I2C. The TDS 
chip, as a slave node, will never control SCL, but will put some data on SDA when the chip is selected in 
read operation. The operating speed depends on the GBT-SCA chip and varies from 100kbps to 1Mbps.   

Since only four or five TDS chips will be placed on each front-end board, we arrange 3 bits among the 10-
bits address as the chip ID, which allows at maximum eight devices share the same I2C bus. The rest 7 bits 
are used as inner memory address, which has 35 defined space from 0x0000000 to 0x0100010. The details 
can be found in Tab. 1. The registers with address from 0x0000000 to 0x0011101 are used as parameter 
registers that are read/write accessible. The registers with address from 0x0011110 to 0x0100010 are used 
as diagnostic registers that are read-only via I2C. The diagnostic registers are written by inner TDS logic in 
general mode. The I2C stream format is defined in Fig. 9. It mainly contains three bytes and some 
acknowledge bits (ACK). The first two bytes are sent by master (GBT-SCA chip here). The last byte, also 
called data byte could be sent either by master in write operation or by slave (TDS chip here) in read 
operation. 

I2C
 Configuration 

Port
Parameter 
Registers

Registers

Diagnostics 
Registers

Address, R/W, etc

SCL SDA

From TDS logic 



Start 1 1 1 1 0 ChipID ChipID R/W ACK ChipID A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK Stop  

Figure 9: I2C stream format. 

The 3-bits chip ID will be wired out of chip and connected to logic “1” or “0” on board. The bits para[239:3] 
in Tab. 1, in total 237 bits could serve as a statics level for controlling the TDS. The three bits para[2:0] are 
reserved for test. If all of these three reserved bits are “1”, the 40-bits diagnostic registers are writing 
accessible via I2C to verify their function. The bits Diag[39:0] are diagnostic registers that are read-only in 
general mode. A few important values will be loaded under the control of TDS logic part and readout via 
I2C to achieve debugging and monitoring purposes. 

5. Packaging 

To deal with a large number of I/O pins and 4.8 Gbps output data rate, we will use wire-bond BGA (Ball 
Grid Array) packaging for all TDS chips. The total number of I/O pins is expected to be around 400. The 
trace length between the two fast speed TDS output pins and the BGA balls can be controlled to have a 
distance of at least 0.6 mm. 



 

Table 1: Registers inner TDS chip (240-bits parameter registers and 40-bits diagnostic registers). 

Address Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
0x0000000 para[7] para[6] para[5] para[4] para[3] reserved reserved reserved
0x0000001 para[15] para[14] para[13] para[12] para[11] para[10] para[9] para[8]
0x0000010 para[23] para[22] para[21] para[20] para[19] para[18] para[17] para[16]
0x0000011 para[31] para[30] para[29] para[28] para[27] para[26] para[25] para[24]
0x0000100 para[39] para[38] para[37] para[36] para[35] para[34] para[33] para[32]
0x0000101 para[47] para[46] para[45] para[44] para[43] para[42] para[41] para[40]
0x0000110 para[55] para[54] para[53] para[52] para[51] para[50] para[49] para[48]
0x0000111 para[63] para[62] para[61] para[60] para[59] para[58] para[57] para[56]
0x0001000 para[71] para[70] para[69] para[68] para[67] para[66] para[65] para[64]
0x0001001 para[79] para[78] para[77] para[76] para[75] para[74] para[73] para[72]
0x0001010 para[87] para[86] para[85] para[84] para[83] para[82] para[81] para[80]
0x0001011 para[95] para[94] para[93] para[92] para[91] para[90] para[89] para[88]
0x0001100 para[103] para[102] para[101] para[100] para[99] para[98] para[97] para[96]
0x0001101 para[111] para[110] para[109] para[108] para[107] para[106] para[105] para[104]
0x0001110 para[119] para[118] para[117] para[116] para[115] para[114] para[113] para[112]
0x0001111 para[127] para[126] para[125] para[124] para[123] para[122] para[121] para[120]
0x0010000 para[135] para[134] para[133] para[132] para[131] para[130] para[129] para[128]
0x0010001 para[143] para[142] para[141] para[140] para[139] para[138] para[137] para[136]
0x0010010 para[151] para[150] para[149] para[148] para[147] para[146] para[145] para[144]
0x0010011 para[159] para[158] para[157] para[156] para[155] para[154] para[153] para[152]
0x0010100 para[167] para[166] para[165] para[164] para[163] para[162] para[161] para[160]
0x0010101 para[175] para[174] para[173] para[172] para[171] para[170] para[169] para[168]
0x0010110 para[183] para[182] para[181] para[180] para[179] para[178] para[177] para[176]
0x0010111 para[191] para[190] para[189] para[188] para[187] para[186] para[185] para[184]
0x0011000 para[199] para[198] para[197] para[196] para[195] para[194] para[193] para[192]
0x0011001 para[207] para[206] para[205] para[204] para[203] para[202] para[201] para[200]
0x0011010 para[215] para[214] para[213] para[212] para[211] para[210] para[209] para[208]
0x0011011 para[223] para[222] para[221] para[220] para[219] para[218] para[217] para[216]
0x0011100 para[231] para[230] para[229] para[228] para[227] para[226] para[225] para[224]
0x0011101 para[239] para[238] para[237] para[236] para[235] para[234] para[233] para[232]
0x0011110 Diag[7] Diag[6] Diag[5] Diag[4] Diag[3] Diag[2] Diag[1] Diag[0]
0x0011111 Diag[15] Diag[14] Diag[13] Diag[12] Diag[11] Diag[10] Diag[9] Diag[8]
0x0100000 Diag[23] Diag[22] Diag[21] Diag[20] Diag[19] Diag[18] Diag[17] Diag[16]
0x0100001 Diag[31] Diag[30] Diag[29] Diag[28] Diag[27] Diag[26] Diag[25] Diag[24]
0x0100010 Diag[39] Diag[38] Diag[37] Diag[36] Diag[35] Diag[34] Diag[33] Diag[32]


