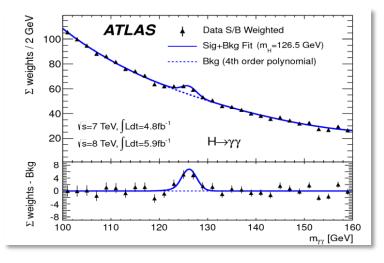
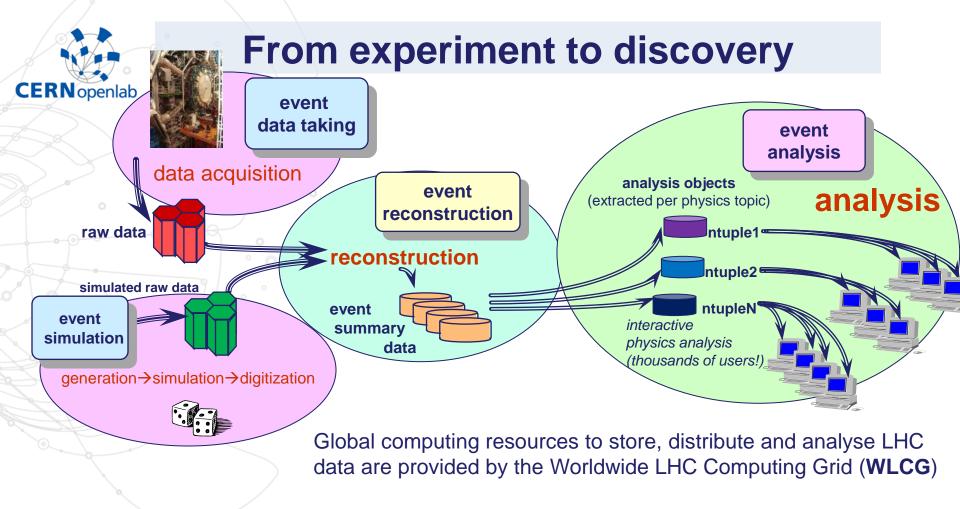

In-Database Physics Analysis


Maaike Limper

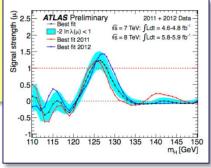
Plots of the invariant mass of photon-pairs produced at the LHC show a significant bump around 125 GeV ...


Higgs boson discovery

4 July 2012: The discovery of a "Higgs boson-like" particle! Operations of LHC and its experiments rely on databases for storing conditions data, log files etcetera

... but the data-points in these plots did not came out of a database

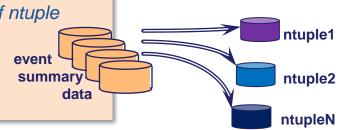
14/8/2014

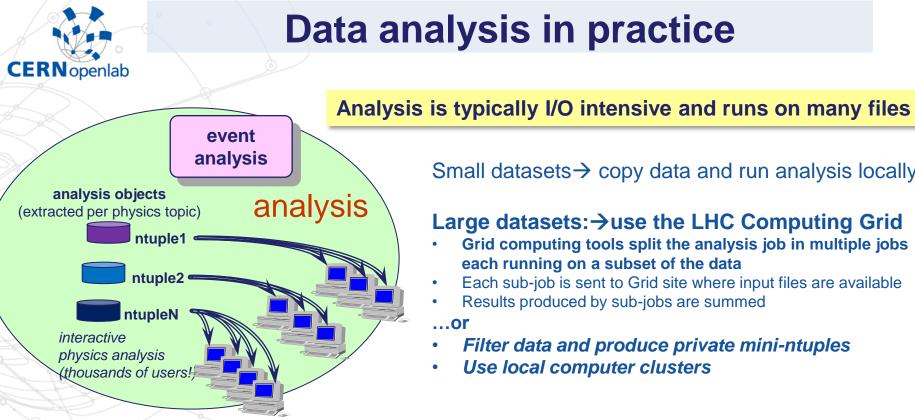

Maaike Limper – CERN openlab

Data analysis in practice

LHC Physics Analysis is done with ROOT

Dedicated C++ framework developed by the High Energy Physics community, <u>http://root.cern.ch</u>


Provides tools for plotting/fitting/statistic analysis etc.



ROOT-ntuples are centrally produced by physics groups from previously reconstructed event summary data

Each physics group determines specific content of ntuple

- Physics objects to include
- Level of detail to be stored per physics object
- Event filter and/or pre-analysis steps

Small datasets \rightarrow copy data and run analysis locally

Large datasets: \rightarrow use the LHC Computing Grid

- Grid computing tools split the analysis job in multiple jobs each running on a subset of the data
- Each sub-job is sent to Grid site where input files are available
- Results produced by sub-jobs are summed
- Filter data and produce private mini-ntuples
- Use local computer clusters

My Openlab Project: Can we replace file-based analysis with a model where data is analysed inside a centrally accessible database?

14/8/2014

My test sample

Test sample of ATLAS analysis ntuples with 2012 collision data

- 127 ntuples (~200 GB) ('NTUP_TOPMU', 'NTUP_TOPEL')
- .5% of entire dataset

These ntuples contain 4000 "branches" holding objects per events

 Objects can be float, int, double, etc but also vector or vector-of-vector of float, int, double, etc

Physicists don't use all variables, they pick&choose to find variables giving best result for their analysis ROOT-ntuple is designed to reduce I/O by loading only relevant branches

14/8/2014

Test data stored in RDBMS

Store separate physics-objects in separate tables

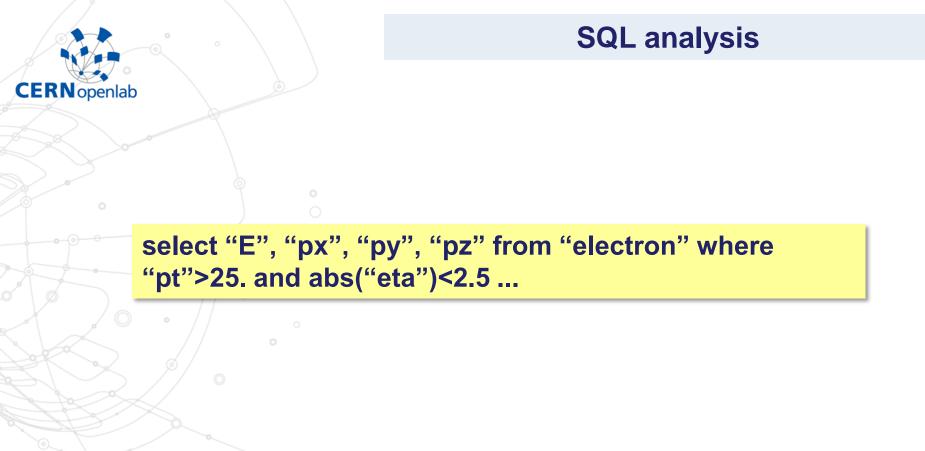
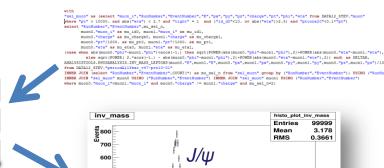

- Allows users to only access objects relevant for their analysis
- Avoid storing vectors in columns to ensure easy predicate filtering

Table name	columns	M rows	size in GB
photon	216	89.9	114.4
electron	340	49.5	94.6
jet	171	26.8	26.3
muon	251	7.7	14.2
primary_vertex	25	89.5	11.9
EF (trigger)	490	7.2	7.9
MET_RefFinal	62	6.6	2.3
eventData	52	7.2	1.4

Physics Analysis C++

```
vector<float> el_pt;
vector<float> el eta;
tree->getBranch("el pt",&el_pt);
tree->getBranch("el eta",&el eta);
lletc.
for ( ievent = 0 ; ievent<nevents ; ievent++){</pre>
   //find good electrons
   tree->NextEvent();
   for(i=0; i<nelectrons; i++){</pre>
     if( el_pt[i] > 25. && fabs(el_eta[i])<2.5 etc.)
          ngoodelectron++;
```



In-database physics analysis

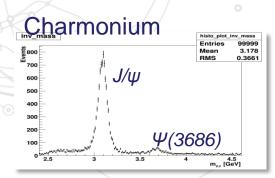
Physics Analysis database

- Separate physics-objects in separate tables
- Physics-object described by <u>hundreds of variables</u> →wide tables!

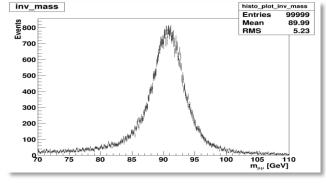
Analysis queries

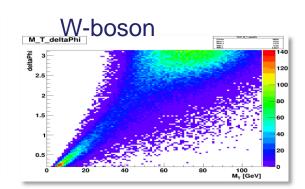
Predicate filtering to quickly apply object quality-criteria Each analysis-specific query uses unique combination of columns

 $\Psi(3686)$


m.... [GeV]

300



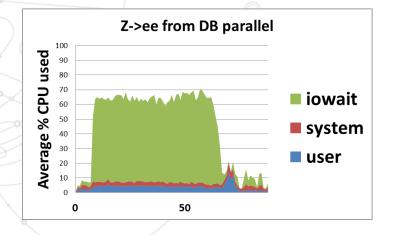

SQL analysis demo

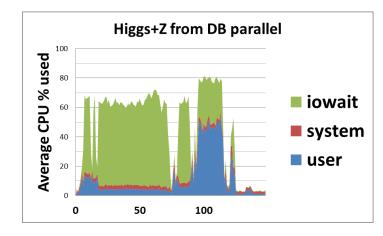
 Demonstrating how to produce some basic analysis plots with SQL

Z-boson

14/8/2014

Maaike Limper – CERN openlab


The problem


Row-based storage means performance limited by I/O reads

 Full table scans over tables with many columns, while only few columns are used for each specific analysis

> Combination of columns unique for each query

Can't index every column!

Column vs row storage

CERN openlab

Column storage stores column data together to reduce number of reads when few columns are needed

select "E", "pt", "eta" from "particle"

row storage reads:

"F" "pt" "eta" "charge" "author" "ptcone20" "ptcone30" "phi" 8163.1 8116.7 -0.882 0.107 6526.4 7823.5 0.193 8196.1 8046.1 2.18 4172.5 -0.908 0.153 4221.3 72320.2 33146.4 -0.829 -1.416 6236.5 2759.1 1.169 1.456 -1 16607.2 1.904 3.208 205693.7 -999 -999 13725.6 4.053 395287.4 1.486 -999 -999 -0.732 4506 3520.2 0.328 26672.3 29752.8 258925 10522.7 1.213 -3.896 -999 -999

column storage reads:

"E"	"pt"	"eta"
8163.1	8116.7	0.107
8196.1	8046.1	0.193
4221.3	4172.5	0.153
72320.2	33146.4	-1.416
6236.5	2759.1	1.456
205693.7	16607.2	3.208
395287.4	13725.6	4.053
4506	3520.2	-0.732
258925	10522.7	-3.896

14/8/2014

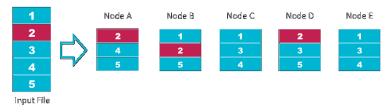
Maaike Limper – CERN openlab

Other databases

Analysing Big Data sets is a real-world problem In recent years many new (non-relational) databases became available, such as Hadoop

- Tests on-going to combine SQL-approach using column storage
 - Hadoop+Impala with Parquet storage
 - Scalable Postgres DB with column store extension (CitusDB)

CERN openlab


Other databases

Hadoop+Impala

- Hadoop File Storage System (HDFS) divides input in blocks, divided over nodes
- Cloudera Impala: query-engine on Hadoop
- Using Parquet-format (column-storage) to store data in HDFS

HDFS Data Distribution

Scalable Postgres (CitusDB)

- Workers on nodes represent independent Postgres instances
 - Master-node chop input-table in sub-table divided over workers
- Use CitusDB column-store extension for storing data

>

Other databases

Test setup with 4 nodes running simultaneously

- Oracle 4-node RAC
- Hadoop 4-node cluster
- CitusDB 4-node cluster

DEMO: simple query performance comparison using different database systems

LHC analysis & Big Data

ROOT has its own parallel processing version: PROOF the Parallel ROOT Framework

Physics users can currently use grid and/or local PROOF clusters to analyse large datasets

Database technology can potentially be used to do physics analysis

Write analysis/filtering code in SQL

Analysis data benefits from column-storage

