

Philippe CANAL
root.cern.ch

ROOT, I/O and Concurrency

Philippe Canal

Fermilab

Philippe CANAL
root.cern.ch

 Overview

• ROOT

• I/O

• Concurrency

2

Philippe CANAL
root.cern.ch

ROOT Guiding Principles

• User Oriented

– Support and Feedback is essential

– HEP is main but not sole user/target

• C++: Interpreter and Reflection

• High performance (many dimensions)

• Release early and often

• Open-ended

– Include interfaces to other languages

– Help promote associated project (RooFit, etc.)
3

Philippe CANAL
root.cern.ch

I/O Long Term Goals

• Performance

– Keep up / Pass competition
• With StreamerInfo layer and JIT, large opportunities for

optimizations

• Features

– Maintain and enhance schema evolution support

– Adapt to new hardware landscape
• Today: multitask, vectorization ; Tomorrow: transactional memory.

• Interoperability

– Open their ecosystem to using ROOT [I/O]

– Open ROOT users to use the other ecosystem(s)

4

Philippe CANAL
root.cern.ch

 I/O Priorities

• Multi-processing / Multi-threading

• Performances improvements
– Amdahl, File Format, Streaming, Vectorization

• Interface Simplification and Clarification
– Leverage C++11 for ease of use/documentation

• Interoperability
– HDF5, R, Python, Blaze, numpy, etc.

• Additional statistics and Feedback on I/O Perf.
5

root.cern.ch ROOT Planning Day 08 July 2014

Here comes cling

• Cling introduces binary compatible
Just In Time compilation of script
and code snippets.

• Will allow:
– I/O for ‘interpreted’ classes

– Runtime generation of
CollectionProxy
• Dictionary no longer needed for collections! [Summer Student]

– Run-time compilation of I/O Customization rules
• including those carried in ROOT file.

– Derivation of ‘interpreted’ class from compiled class
• In particular TObject

– Faster, smarter TTreeFormula

– Potential performance enhancement of I/O
• Optimize hotspot by generating/compiling new code on demand

– Interface simplification thanks to full C++ support
• New, simpler TTree interface (TTreeReader) [Summer Contributor]

6

root.cern.ch ROOT Planning Day 08 July 2014

Challenges

• Two distinct user bases

– Individual Users
• Want everything automatic / just works

– Framework Developers
• Want to control everything (want no surprise)

• Two distinct mode of operations

– Thread based

– Task based

• Must support all 4 combinations

• Concurrent access must not cost (too much) for non-
threaded use.

root.cern.ch ROOT Planning Day 08 July 2014

User / Thread Example

• Simple merge histo interface.

– User add ‘only’ the lines (*)

// Main Thread

TDirectory *merger = new THistoMerger(nthreads); // (*)

// Each thread init

merger->cd(); // (*)

TH1F* h = new THF1(“h”,…);

// Each thread event loop

h->Fill(value);

// Tear down or end

merger->Merge(); // (*)

ouputdir->cd();

merger->Write();

// Each thread init

merger->cd(); // (*)

TH1F* h = new THF1(“h”,…);

// Each thread event loop

h->Fill(value);

root.cern.ch ROOT Planning Day 08 July 2014

User / Task Example

• Simple merge histo interface.

– User add ‘only’ the lines (*)

// Main initialization

TDirectory *merger = new THistoMerger(nthreads); // (*)

// Each task init

TH1F* h = new THF1(“h”,…);

h->SetDirectrory(merger); // (*)

// Each task iteration

h->Fill(value);

// Final task

merger->Merge(); // (*)

ouputdir->cd();

merger->Write();

// Each task init

TH1F* h = new THF1(“h”,…);

merger->Append(h); // (*)

// Each task iteration

h->Fill(value);

root.cern.ch ROOT Planning Day 08 July 2014

Framework example

• Framework want to owns histos.

• But what about the case where there is 100,000 of histo?

– Especially if filled rapidly (so need lock less Fill)

10

// Each thread/task init

TH1F* h = new THF1(“h”,…);

fwk_ownlist->push_back(h);

// Each thread/task event loop

h->Fill(value);

// Tear down or end

foreach h in ownlist(s) (or equiv)

 TList *lst = complex_code_to_gather_histo(fwk_threadlist);

 merged = Merge(lst);

 outputdir->WriteObject(merged);

root.cern.ch ROOT Planning Day 08 July 2014

100,000 of histos on several threads

• Questions:

– What is the use case really like?
• What is the required performance (‘where’ can we put a lock)

– When is the data merge done?
• Every Fill

• Every so many calls fills

– One of the threads

– A merger thread?

– Why is it better that one histo per threads

– Are TH* really heavy weight?
• What is the real over-head?

• When/how is the allocate-the-bins-only-when needed used?

– Related concerns
• Should variable size and fixed size bins histo be more clearly separated?

– Improve performance, Reduce over head (of fixed size case)

– Is it making the interface harder to use/explain?

11

root.cern.ch ROOT Planning Day 08 July 2014

Another interface idea.

•

// Main initialization

TH1F *mainh = new TH1F(“h”,….)

// Each task init

HistoTaskHandle h(mainh);

h->SetBufferSize(…);

// Each task iteration

h->Fill(value);

// Final task

foreach handle h:

 mainh->Add(h);

outputdir->Write(mainh);

// Each task iteration

h->Fill(value);

// Each task init

HistoTaskHandle h(mainh);

h->SetBufferSize(…);

root.cern.ch ROOT Planning Day 08 July 2014

Another interface idea.

• Spot the difference 

// Main initialization

TH1F *mainh = new TH1F(“h”,….)

// Each task init

TH1*h = mainh->Clone();

h->SetBufferSize(…);

// Each task iteration

h->Fill(value);

// Final task

foreach handle h:

 lst->Add(h);

mainh->Merge(lst);

outputdir->Write(mainh);

// Each task iteration

h->Fill(value);

// Each task init

TH1*h = mainh->Clone();

h->SetBufferSize(…);

root.cern.ch ROOT Planning Day 08 July 2014

Framework Requirements

• If ROOT uses threads that should be not
computationally intensive

– Example: prefetching thread

• If ROOT wants to run cpu-intensive tasks they must (be
able to be forced to) request CPU time from the
framework

– For example a parallel unzipping would need to be a Task
pushed on the TBB stack

– Implies that when adding improvement that uses parallel
execution we ought to follow a task model

14

root.cern.ch ROOT Planning Day 08 July 2014

Task vs. Thread

• Task model simpler to use
– Delegate load balancing to ‘framework’

– Similar to Proof
• However task more ‘flexible’ control flow

• Proof more extensive (over more hardware config)

– Should we promote the task mode (tutorials, etc.) ?

• Requirements
– Need (virtual) Interface

• To allow replacing TBB with Apple GCD.

– Need always available default implementation
• Which is easily replaceable by the user controlled one.

– Need to be pluggable/controllable by the user

• Other Utilities we could offer
– Similar to boost::thread_specific smart pointer.

root.cern.ch ROOT Planning Day 08 July 2014

PROOF vs. Task Models

• What are the difference?

• i.e. can PROOF(lite-with-thread) be (extended to be) our
interface?

• If not how do we provide a smooth experience

– From single stream of operation

– To many streams of operation

– To many machine with many streams of operations

– Without changing the code?

16

root.cern.ch ROOT Planning Day 08 July 2014

Vectorization

• Many alternative vectorization techniques

– VC, VDT, Cuda, by hand, etc.

• GeantV uses template techniques and traits to steer the
choice.

• Should we adopt the same techniques

– and share/distribute the common parts?

17

Philippe CANAL
root.cern.ch

Backup slides

18

Philippe CANAL
root.cern.ch

 Priorities

• Multi-processing / Multi-threading

• Performances improvements
– Amdahl, File Format, Streaming, Vectorization

• Interface Simplification and Clarification
– Leverage C++11 for ease of use/documentation

• Interoperability
– HDF5, R, Python, Blaze, numpy, etc.

• Additional statistics and Feedback on I/O Perf.

19

root.cern.ch ROOT Planning Day 08 July 2014

Multi-Processing

• Import Chris’ changes to v5.34 and port to v6.02

• Extend the ability to disable auto-add

– Limited to TH* so far

– Remove use of I/O in TH*::Clone

• Resolve parallelism limitations

– As shown in the CMS condition database example

20

root.cern.ch ROOT Planning Day 08 July 2014

Multi-Processing

• Histogram and
multi-threading

– Need to start prototyping &
testing asap

– New interface to incrementally
merge histograms from
multiple threads

• Read/Write TTree branches in multiple user thread

– Need to start prototyping/testing asap

– Do we need new/simpler interface?

– Need to design the limit and semantics

– Extra complexity/cost to conserve basket clustering

– Require TFile synchronization

21

root.cern.ch ROOT Planning Day 08 July 2014

Thread Safety

• Cling enables support for robust multi-thread I/O

– Cling has clear separation of database engine and execution
engine allowing to lock them independently

• Chris’ changes allow multi-threaded I/O as long as

– Each TFile and TTree objects are accessed by only one thread (or
the user code is explicitly locking the access to them)

– Interpreter is *not* the top level entry point.

– Cling will allow to remove the second limitation.

• More has to be done to optimize

– Some object layout leads to poor performance and poor scalability

– Reduce number of ‘class/version/checksum’ searches
• To reduce the number of atomic and thread local uses

 22

root.cern.ch ROOT Planning Day 08 July 2014

Parallel Merge Challenges

• Need official daemon/thread parallelMergeServer
– Could use Zero MQ as underlying transport.

• Need to efficiently deal with many histograms
– Each of them still need to be merged at the end

• Lack of ordering of the output of the workers
– No enforcing of luminosity block boundaries for example

– Support for ordering increases worker/server coupling

– Space reservation is challenging (variable entry)

• Need a new concept (an Entry Block)

– ‘Set of entries that are semantically related’

– To be used to gather those entries together ‘automatically’

– Need flexible/customizable marker

– Is it really worth the extra complexity?
23

root.cern.ch ROOT Planning Day 08 July 2014

• Fully tested and performing version requires
• Parallel Merge Thread

• Parallel Merge Daemon (authorization, auto-start, error handling)

• Parallel Merge for Histogram (proper set
of benchmarks, performance improvement, etc.)

• Benchmarks

– Still to be designed

– Based on existing example (some multithread) and new
example based of the Event test.

– Based on experiment uses cases.

Parallel merge

24

root.cern.ch ROOT Planning Day 08 July 2014

Other Possible Parallel Processing

• Read/Write branches using internals thread/tasks

– Need to partially back out memory optimization

– Require TFile synchronization

• Offload work (compression) to separate thread

– Need to work well with task based scheduler

• Thread safe version of TFile

– Not quite sure of semantic

– Need to be cost-neutral for traditional uses

• Support for ‘multiple’ interpreter state

– Decide on need / interface / use limitations

– shared libraries (their PCMs) shared between interpreters?

25

root.cern.ch ROOT Planning Day 08 July 2014

Vectorization

• In TTree

– Eg. TTree::Draw execute formula on more than one
element at a time

– New interface allowing retrieval of multiple entries at once.

• In Streaming

– Changing endianess would also merging and vectorization of
even more streaming actions.

26

root.cern.ch ROOT Planning Day 08 July 2014

Interoperability

• HDF5, R, Python, Blaze, numpy, etc.

– These ecosystems has their strengths and weaknesses as well
some similarities and significant differences with ROOT

– What can we learn from them?

– How can ROOT [I/O] can be leveraged to enhance them?

– How could our workflows benefit from using directly or
indirectly any part of these ecosystems?

– Who can help?

27

root.cern.ch ROOT Planning Day 08 July 2014

Why one thread/schedule per TTree

• When reading TTree holds:

– Static State:
• List of branches, their types their data location on file.

– Dynamic State:
• Current entry number, TTreeCache buffer (per TTree),

User object ptr (one per (top level) branch),
Decompressed basket (one per branch)

– Separating both would decrease efficiency

• Advantages

– Works now!

– No need for locks or synchronization

– Decoupling of the access patterns

• Disadvantages

– Duplication of some data and some buffers.
• However this is usually small compare to the dynamic state.

– Duplication of work if access overlap

28

