MiniBooNE and the Status of Sterile Neutrinos

Christina Ignarra MIT July 1, 2014

Outline

- Introduction
- Motivation for sterile neutrinos: LSND
- Sterile neutrino phenomenology
- MiniBooNE (arxiv:1303.2588)
- Other recent anomalies
- Constraints from other experiments
- Global Fits (arxiv:1207.4765)
- Future

Neutrinos in the standard model

- Only interact via the "weak force" (W and Z bosons)
- Three flavors:
 - $\cdot \ \mathrm{Electron} \ \nu_e \to e$
 - $\cdot {\rm \ Muon} \quad \nu_{\mu} \to \mu$
 - $\cdot \text{ Tau } \quad \nu_{\tau} \rightarrow \tau$
- Massless

Anomaly in the neutrino sector

"Solar neutrino problem"

Neutrino Oscillations

Maybe neutrinos "mix" like in the quark sector

Two neutrino Oscillations:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} \\ U_{\mu 1} & U_{\mu 2} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} \qquad \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

$$|\nu_{\mu}(t)\rangle = -\sin\theta e^{-iE_{1}t} |\nu_{1}\rangle + \cos\theta e^{-iE_{2}t} |\nu_{2}\rangle \qquad E \approx p + \frac{m^{2}}{2E}$$
$$|\langle \nu_{e} | \nu_{\mu}(t)\rangle|^{2} = \sin^{2}2\theta (1 - \cos(E_{2} - E_{1})t) \qquad v \approx c = \frac{L}{t}$$

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2\theta \sin^{2} (1.27 \Delta m^{2} \frac{L}{E})^{\text{in m (km)}}$$
Not
unitless
⁵

Neutrino Oscillations

Neutrino Oscillations

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \text{ phase which may be non-zero}$$

$$\begin{cases} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix}$$

2-Neutrino Approximation

2-Neutrino Approximation

Great, now we have a "nu" standard model!

So what's the problem?

- Introduction
- Motivation for sterile neutrinos: LSND
- Sterile neutrino phenomenology
- MiniBooNE (arxiv:1303.2588)
- Other recent anomalies
- Constraints from other experiments
- Global Fits (arxiv:1207.4765)
- Future

LSND Anomaly

Liquid scintillator detector using stopped pion beam

LSND Anomaly

Observed excess of $\bar{\nu}_e$'s, which corresponds to oscillations (for 2 neutrino fit) on the order of $\Delta m^2 \sim 1 \ eV^2(3.8 \ \sigma)$

- Not consistent with known mass splittings!

- Introduction
- Motivation for sterile neutrinos: LSND
- Sterile neutrino phenomenology
- MiniBooNE (arxiv:1303.2588)
- Other recent anomalies
- Constraints from other experiments
- Global Fits (arxiv:1207.4765)
- Future

Why "Sterile"?

3+1 Model

- Assume one more neutrino that doesn't interact through the weak force but can still oscillate with other neutrinos
- Assume $\Delta m^2_{sterile} \gg \Delta m^2_{atm}$ and Δm^2_{solar} so only fit to one Δm^2 and one mixing parameter per experiment.

3+1 Model Fit Parameters:

Oscillation Probabilities:

Appearance: $P(\nu_{\alpha} \to \nu_{\beta \neq \alpha}) = \sin^2 2\theta_{\alpha\beta} \sin^2(1.27\Delta m^2 \frac{L}{E})$ Disappearance: $P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - \sin^2 2\theta_{\alpha\alpha} \sin^2(1.27\Delta m^2 \frac{L}{E})$

$$\sin^2 2\theta_{\mu e} = 4U_{e4}^2 U_{\mu 4}^2$$
$$\sin^2 2\theta_{\mu \mu} = 4U_{\mu 4}^2 (1 - U_{\mu 4}^2)$$
$$\sin^2 2\theta_{ee} = 4U_{e4}^2 (1 - U_{e4}^2)$$

3+1 Fit parameters: Δm_{41}^2 , $|U_{\mu 4}|$, and $|U_{e4}|$

$3+2 \mod l$

$$\Delta m_{51}^2 \ge \Delta m_{41}^2 \gg \Delta m_{atm}^2$$
The 3 original mass eigenstates remain
degenerate so now we are doing a 3
neutrino fit
$$\Delta m_{sterile}^2 \sim 1 \ eV^2 \qquad V_{\mu}$$

$$\Delta m_{sterile}^2 \sim 1 \ eV^2 \qquad V_{\mu}$$

$$\nabla_{\tau}$$

$$\nabla$$

Appearance: $P(\nu_{\alpha} \to \nu_{\beta \neq \alpha}) = 4|U_{\alpha 4}|^{2}|U_{\beta 4}|^{2}\sin^{2}\frac{1.27\Delta m_{41}^{2}L}{E} + 4|U_{\alpha 5}|^{2}|U_{\beta 5}|^{2}\sin^{2}\frac{1.27\Delta m_{51}^{2}L}{E} + 8|U_{\alpha 4}||U_{\beta 4}||U_{\alpha 5}||U_{\beta 5}|\sin\frac{1.27\Delta m_{41}^{2}L}{E}\sin\frac{1.27\Delta m_{51}^{2}L}{E}\cos(\frac{1.27\Delta m_{54}^{2}L}{E} + \phi_{45})$

ν_τ

 \square ν_s

"-" for $\bar{\nu}$

3+3 Model (new for arxiv:1207.4765)

- 3rd mostly sterile state, Introduce $\Delta m_{61}^2, U_{\mu 6}, U_{e6}, \Phi_{46}, \Phi_{56}$
- 12 total parameters

 $P(\nu_{\alpha} \rightarrow \nu_{\beta}) \simeq -4|U_{\alpha 5}||U_{\beta 5}||U_{\alpha 4}||U_{\beta 4}|\cos\phi_{54}\sin^2(1.27\Delta m_{54}^2L/E)$ Appearance: $-4|U_{\alpha 6}||U_{\beta 6}||U_{\alpha 4}||U_{\beta 4}|\cos\phi_{64}\sin^2(1.27\Delta m_{64}^2L/E)$ $-4|U_{\alpha 5}||U_{\beta 5}||U_{\alpha 6}||U_{\beta 6}|\cos\phi_{65}\sin^2(1.27\Delta m_{65}^2L/E)$ $+4(|U_{\alpha 4}||U_{\beta 4}|+|U_{\alpha 5}||U_{\beta 5}|\cos\phi_{54}+|U_{\alpha 6}||U_{\beta 6}|\cos\phi_{64})|U_{\alpha 4}||U_{\beta 4}|\sin^2(1.27\Delta m_{41}^2L/E)$ $+4(|U_{\alpha 4}||U_{\beta 4}|\cos\phi_{54}+|U_{\alpha 5}||U_{\beta 5}|+|U_{\alpha 6}||U_{\beta 6}|\cos\phi_{65})|U_{\alpha 5}||U_{\beta 5}|\sin^2(1.27\Delta m_{51}^2L/E)$ $+4(|U_{\alpha 4}||U_{\beta 4}|\cos\phi_{64}+|U_{\alpha 5}||U_{\beta 5}|\cos\phi_{65}+|U_{\alpha 6}||U_{\beta 6}|)|U_{\alpha 6}||U_{\beta 6}|\sin^{2}(1.27\Delta m_{61}^{2}L/E)$ $+2|U_{\beta 5}||U_{\alpha 5}||U_{\beta 4}||U_{\alpha 4}|\sin\phi_{54}\sin(2.53\Delta m_{54}^2L/E)$ $+2|U_{\beta 6}||U_{\alpha 6}||U_{\beta 4}||U_{\alpha 4}|\sin\phi_{64}\sin(2.53\Delta m_{64}^2L/E)$ $+2|U_{\beta 6}||U_{\alpha 6}||U_{\beta 5}||U_{\alpha 5}|\sin\phi_{65}\sin(2.53\Delta m_{65}^2L/E)$ $+2(|U_{\alpha 5}||U_{\beta 5}|\sin\phi_{54}+|U_{\alpha 6}||U_{\beta 6}|\sin\phi_{64})|U_{\alpha 4}||U_{\beta 4}|\sin(2.53\Delta m_{41}^2L/E)$ $+2(-|U_{\alpha 4}||U_{\beta 4}|\sin\phi_{54}+|U_{\alpha 6}||U_{\beta 6}|\sin\phi_{65})|U_{\alpha 5}||U_{\beta 5}|\sin(2.53\Delta m_{51}^2L/E)$ $+2(-|U_{\alpha 4}||U_{\beta 4}|\sin\phi_{64}-|U_{\alpha 5}||U_{\beta 5}|\sin\phi_{65})|U_{\alpha 6}||U_{\beta 6}|\sin(2.53\Delta m_{61}^2L/E)$

Disappearance: $\begin{aligned} P(\nu_{\alpha} \to \nu_{\alpha}) \simeq 1 - 4|U_{\alpha4}|^{2}|U_{\alpha5}|^{2}\sin^{2}(1.27\Delta m_{54}^{2}L/E) \\ -4|U_{\alpha4}|^{2}|U_{\alpha6}|^{2}\sin^{2}(1.27\Delta m_{64}^{2}L/E) - 4|U_{\alpha5}|^{2}|U_{\alpha6}|^{2}\sin^{2}(1.27\Delta m_{65}^{2}L/E) \\ -4(1 - |U_{\alpha4}|^{2} - |U_{\alpha5}|^{2} - |U_{\alpha6}|^{2})(|U_{\alpha4}|^{2}\sin^{2}(1.27\Delta m_{41}^{2}L/E) \\ +|U_{\alpha5}|^{2}\sin^{2}(1.27\Delta m_{51}^{2}L/E) + |U_{\alpha6}|^{2}\sin^{2}(1.27\Delta m_{61}^{20}L/E)) .\end{aligned}$ OK, LSND motivated introducing sterile neutrinos... is there any other data to back this up?

MiniBooNE

- Designed to explore LSND anomaly (similar L / E)
 - Different detector design and systematics
 - Can run in neutrino or antineutrino mode by choosing positive or negative mesons with a focusing horn

MiniBooNE

- Cherenkov Detector
 - Detects Cherenkov rings created by charged particles
- Main sources of background from intrinsic ν_e in the beam and mis ID ($\gamma \rightarrow e^+e^-$) from $\pi^0 \rightarrow \gamma\gamma, \Delta \rightarrow N\gamma$

MiniBooNE Data and Backgrounds

MiniBooNE $\bar{\nu}$ mode

MiniBooNE ν mode

3.0

1.4

E_vQE (GeV)

1

sin²20

Low energy excess

- Still unexplained
- Not a statistical fluctuation of background (6 σ)
- Unlikely intrinsic u_e (low bg here)
- NC π_0 bg dominates
 - Constrained by NC π_0 direct measurements
- Δ -> N γ rate tied to NC $\pi_{_0}$ rate
 - Theoretical calculations agree within 20%

MiniBooNE Combined Fit

3+2 combined fit

- CP violation allows for difference between neutrinos and antineutrinos
- Much better fit than 3+1
- No v_e or v_μ disappearance constraints
 - Limited value outside of a global picture

- Introduction
- Motivation for sterile neutrinos: LSND
- Sterile neutrino phenomenology
- MiniBooNE (arxiv:1303.2588)
- Other recent anomalies
- Constraints from other experiments
- Global Fits (arxiv:1207.4765)
- Future

• Reactor experiments often used to measure neutrino mixing in a 3 neutrino scenario

 $P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{ee} \sin^2(1.27\Delta m^2 \frac{L}{E})$

How do you get the expected flux without a near detector? Monte Carlo simulations: 2 components

• Fission rates

(which we know very well)

- Predicting neutrinos from fissions
 - This has changed recently! (arxiv:1101.2663) We have more information than we did ~30 years ago
- Raised the predicted number of neutrino events
 - So now there is a deficit in observed events compared to prediction!

- What do oscillations look like in an experiment designed to look for much smaller mass splittings?
- Get fast oscillations: oscillations occur much more rapidly than energy resolution of detector can resolve

Get Deficit of events corresponding to ½ oscillation amplitude

Observed/predicted averaged event ratio: $R=0.927\pm0.023$ (3.0 σ)

The addition of one or more sterile neutrinos could resolve this issue

Gallium Anomaly

- Cr-51 and Ar-37 sources were used to calibrate the GALLEX and SAGE solar neutrino experiments
- Very short baseline (meter scale) so sensitive to ~1 eV² neutrino oscillation

 $\nu_e \not\rightarrow \nu_e$

- Introduction
- Motivation for sterile neutrinos: LSND
- Sterile neutrino phenomenology
- MiniBooNE (arxiv:1303.2588)
- Other recent anomalies
- Constraints from other experiments
- Global Fits (arxiv:1207.4765)
- Future
Included data sets

Included data sets

Included data sets

 v_e and \overline{v}_e Disappearance:

Bugey $\bar{\nu}_e \not\rightarrow \bar{\nu}_e$ (with new reactor fluxes)

Gallium $\nu_e \not\rightarrow \nu_e$

Karmen/LSND xsec $\nu_e \not\rightarrow \nu_e$

Problem with χ^2 in global fits

- Some experiments have 50 bins while others have 4...
- Treats all bins equally rather than all experiments equally High bin experiments dominate χ^2

Parameter Goodness of Fit

Tests how well different groups of datasets agree with each other

 $PG = Prob(\chi^2_{PG}, ndf_{PG})$ $\chi^2_{PG} = \chi^2_{min,combined} - \sum_i \chi^2_{min,d}$ i runs over datasets $ndf_{PG} = \sum_{d} N_{p_d} - N_{p_{combined}}$ Independent parameters Independent per dataset parameters in global fit

Reference: M. Maltoni and T. Schwetz 2003 arXiv:hep-ph/0304176

Parameter Goodness of Fit

Tests how well different sets of data agree with each other

Ex. $\nu vs \bar{\nu}$ for 3+1 fit

$$\chi^{2}_{PG}(\nu \ vs \ \bar{\nu}) = \chi^{2}_{min}(all) - \chi^{2}_{min}(\nu) - \chi^{2}_{min}(\bar{\nu})$$

$$\chi^{2} \text{ from fit to} \nu \qquad \chi^{2} \text{ from fit to} \nu \qquad \chi^{2} \text{ from fit to} \bar{\nu}$$

$$\chi^{2} \text{ from fit to} \nu \qquad \chi^{2} \text{ from fit to} \bar{\nu}$$

$$\chi^{2} \text{ from fit to} \nu \qquad \chi^{2} \text{ from fit to} \bar{\nu}$$

$$\chi^{2} \text{ from fit to} \bar{\nu}$$

- Introduction
- Motivation for sterile neutrinos: LSND
- Sterile neutrino phenomenology
- MiniBooNE (arxiv:1303.2588)
- Other recent anomalies
- Constraints from other experiments
- Global Fits (arxiv:1207.4765)
- Future

3+1 Global Fit

Subsets of data

	χ^2_{min} (dof)	P_{best}	$\chi^2_{null} \ (dof)$	P_{null}
3+1				
All	233.9(237)	55%	286.5(240)	2.1%
App	87.8 (87)	46%	147.3(90)	0.013%
Dis	128.2(147)	87%	139.3(150)	72%
ν	123.5(120)	39%	133.4 (123)	25%
$\overline{\nu}$	94.8 (114)	90%	153.1 (117)	1.4%

	χ^2_{PG} (dof)	PG (%)
App vs. Dis	17.8(2)	0.013%
ν vs. $\overline{\nu}$	15.6(3)	0.14%

Best Fit Values

3+1	Δm^2_{41}	$ U_{\mu4} $	$ U_{e4} $
All	0.92	0.17	0.15

3+2 Global Fit

	χ^2_{min} (dof)	P_{best}		χ^2_{PG} (dof)	PG (%)
3+1					
All	233.9(237)	55%			
App	87.8 (87)	46%			
Dis	128.2(147)	87%	App vs. Dis	17.8 (2)	0.013%
ν	123.5(120)	39%	ν vs. $\overline{\nu}$	15.6(3)	0.14%
$\overline{\nu}$	94.8 (114)	90%			
3+2					
All	221.5 (233)	69%			
App	75.0(85)	77%			
Dis	122.6(144)	90%	App vs. Dis	23.9(4)	0.0082%
ν	116.8 (116)	77%	ν vs. $\overline{\nu}$	13.9(7)	5.3%
$\overline{\nu}$	90.8 (110)	90%			

3+3 Global Fit

	χ^2_{min} (dof)	P_{best}		χ^2_{PG} (dof)	PG (%)
3+1					
All	233.9 (237)	55%			
App	87.8 (87)	46%			
Dis	128.2 (147)	87%	App vs. Dis	17.8(2)	0.013%
ν	123.5(120)	39%	ν vs. $\overline{\nu}$	15.6(3)	0.14%
$\overline{\nu}$	94.8 (114)	90%			
3+2					
All	221.5 (233)	69%			
App	75.0(85)	77%			
Dis	122.6 (144)	90%	App vs. Dis	23.9(4)	0.0082%
ν	116.8 (116)	77%	ν vs. $\overline{\nu}$	13.9(7)	5.3%
$\overline{\nu}$	90.8 (110)	90%			
3+3					
All	218.2 (228)	67%			
App	70.8 (81)	78%			
Dis	120.3 (141)	90%	App vs. Dis	27.1(6)	0.014%
ν	116.7 (111)	34%	ν vs. $\overline{\nu}$	10.9(12)	53%
$\overline{\nu}$	90.6 (105)	84%			

Why Does App vs. Dis not get better?

3+2 fits (3+3 is similar)

They are finding different best fit points...

It turns out the appearance fit is largely driven by MB 50

Does Not explain MiniBooNE low energy excess

Does Not explain MiniBooNE low energy excess

Does Not explain MiniBooNE low energy excess

Can MicroBooNE explain the MiniBooNE low energy excess?

- MiniBooNE excess is not consistent with the global picture even within sterile neutrino models
- MicroBooNE will explore this: new detector technology which can tell the difference between Ves and γs (data-taking to begin this year!)

- Dimensions: 10 m x 2.3 m x 2.5 m
- High Voltage: 125 kV
- Drift field: 500 V/cm

Events in MicroBooNE

e-y separation

If γ -like signal in μ BooNE over γ backgrounds

If some or all of the MiniBooNE low energy excess is due to γ's, MicroBooNE will be able to tell!

- Introduction
- Motivation for sterile neutrinos: LSND
- Sterile neutrino phenomenology
- MiniBooNE (arxiv:1303.2588)
- Other recent anomalies
- Constraints from other experiments
- Global Fits (arxiv:1207.4765)
- Future

Oscillation Probabilities for Global Best Fit Parameters

Future experiments should aim to have sensitivities, in these regions

Future Experiments

Future and proposed experiments for sterile neutrino searches

Source	App/Dis	Channel	Experiment
Reactor	Dis	$\bar{\nu}_e \rightarrow \bar{\nu}_e$	Nucifer, Stereo, SCRAMM,
			NIST, Neutrino4, DANSS
Radioactive	Dis	$\nu_e \rightarrow \nu_e \ \bar{\nu}_e \rightarrow \bar{\nu}_e$	Baksan, LENS, Borexino, SNO+,
			Ricochet, CeLAND, Daya Bay
Accelerator-based	Dis	$\bar{\nu}_e \rightarrow \bar{\nu}_e$	IsoDAR
isotope			
Pion / Kaon DAR	App & Dis	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_e \ \nu_e \rightarrow \nu_e$	OscSNS, DAE δ ALUS,
		$ u_{\mu} ightarrow u_{e}$	KDAR
Accelerator (Pion DIF)	App & Dis	$\nu_{\mu} \rightarrow \nu_{e} \ \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	MINOS+, MicroBooNE,
		$ u_{\mu} \rightarrow \nu_{\mu} \ \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} $	LAr1kton+MicroBooNE, CERN SPS
Low-energy ν -Factory	App & Dis	$\nu_e \rightarrow \nu_\mu \ \bar{\nu}_e \rightarrow \bar{\nu}_\mu$	ν STORM
		$ u_{\mu} \rightarrow \nu_{\mu} \ \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} $	

LArl

- Far detector to MicroBooNE
- Step in the U.S. Liquid Argon TPC program (leading up to LBNE)

OscSNS

- LSND-style experiment
- Located at the Spallation Neutron Source at Oak Ridge
- Uses the monoenergetic (29.8 MeV) ν_{μ} s to look for

 $\nu_{\mu} \rightarrow \nu_{\mu}$ in the neutral current channel

• This is very powerful since the flavored neutrinos have the same NC cross-sections, and are indistinguishable from each other, meaning any observed disappearance is due to sterile neutrinos

OscSNS

IsoDAR

IsoDAR

IsoDAR

νStorm

Look for $\nu_e \rightarrow \nu_\mu$ oscillations at neutrino factory

Conclusions

- There are anomalies in short baseline experiments that need to be addressed
- 3+1 fits are not a good description of world data, but they are better than fits with no sterile neutrinos
- 3+2 helps -- cp violation helps resolve tension between neutrino and antineutrino data
- 3+3 is not a significant improvement over 3+2
- Still tension between appearance and disappearance experiments
- Does not explain MiniBooNE low energy excess
- Need future experiments to shed light on this!

Thank You!

MicroBooNE light collection system

arXiv:1304.0821

- 30 PMTs behind wavelength shifting plates on the side of the cryostat.
- Primarily used for triggering, background rejection, and correcting for charge losses and diffusion as a function of drift distance

Wavelength shifting for light detection

Light produced at 128 nm (invisible to PMTs)

- We use a wavelength shifting material called Tetraphenyl Butadiene (TPB) to coat plates which will go in front of the PMTs
- We use a mixture of 50% TPB and 50% polystyrene (PS) for our plate coating
- We find that mixing the **TPB** in **PS** makes the plates more durable and is much more cost effective than an evaporative coating

Plate sample with a 50% TPB-PS coating
Wire planes

- 3 mm spacing
- Stainless steel coated with copper and gold
- Y: vertical plane (2.5 meter long wires), U,V planes: +/- 60 degrees from vertical (5 meters long)

More MicroBooNE Physics Goals

- Low energy cross section measurements
 - Coherent vs. resonant pion production, K production, \mathcal{V}_e cross sections
- Burst supernova detection capability
 - Data buffer, trigger from SNEWS
 - Would have gotten about 29 events for SN1987a
- Prepare for future proton decay searches $(p^+ \rightarrow K^+ \nu)$ possible with larger LArTPCs.
 - Prepare PID, triggers, study backgrounds
- Sensitive to ΔS (fraction of proton spin carried by strange quark)
 - Information on final states for modeling events in LAr, input for spin-dependent WIMP searches,

MicroBooNE Software: LArSoft

- Simulation, analysis and reconstruction in MicroBooNE are performed in the LArSoft framework
- LArSoft supports all US LArTPC efforts : MicroBooNE will both build on the work of ArgoNeuT and contribute to software for LBNE.
- LArSoft simulations interface with specialized neutrino and cosmic ray event generators and implement a full Geant4 particle simulation
- Electron drift and photon propagation are treated and realistic digitized detector signals are simulated
- Liquid argon TPC reconstruction effort is ongoing, and great progress is being made

A simulated neutrino event with expected cosmic ray background overlaid

PMT system timing information used to highlight beam event

A 3D reconstructed CCQE event in LArSoft

MicroBooNE is also important R&D for the development of future LArTPCs

- Demonstrate scalability of technology
- Cold electronics
- Purity
- Analysis tools

Example future LAr detectors:

• LArl: 1 kton: 2 detector sterile neutrino search

• LBNE: 10 kton (or 35 kton) CP violation