Measurement of the Forward-Backward Asymmetry of $t\bar{t}$ at the Fermilab Tevatron

Ziqing Hong

SLAC NATIONAL ACCELERATOR LABORATORY SEMINAR July 9, 2014

Introduction

- The Standard Model and the Top Quark
- A^{tt}_{FB}: Smoking gun for new physics?
- Searching for more evidence
- 2 Tevatron and CDF
- $t \overline{t} \rightarrow dilepton$
- **4** A_{FB}^{ℓ} measurement methodology
- **6** A_{FB}^{ℓ} in dilepton and combination at CDF
- Prospects for a final Tevatron combination
- Conclusions

The Standard Model - Top Quark

The Standard Model - Top Quark

- Observed at Tevatron (1995)
- Very heavy
 - $m_t \simeq 173 \; {\rm GeV/c^2}$
- Very short lived No time to form
 - No time to form hadrons
 - Unique opportunity to study a "bare" quark

Mysterious particle Properties need to be further understood

Top-Quark Pair at Tevatron

Top-quark pair production at the Fermilab **Tevatron**

pp collision at Tevatron

- CP even initial state
- Different from pp collision and CP odd initial state at LHC
- Unique production mechanism
 - 85% quark annihilation (a)
 - 15% gluon fusion (b)

ATR

• LHC is gluon fusion dominated (> 90%)

Top-Quark Pair at Tevatron

$A_{\rm FB}^{t\bar{t}}$ at Tevatron

- Cross-section, mass and width measured & agree with SM What else can we learn about $t\overline{t}$ produced at Tevatron?
- Angular distribution

• Simplest observable:

forward-backward asymmetry (A_{FB})

- - Can measure rapidity difference between top and anti-top
 - Define A_{FB} of $t\bar{t}$ production:

$$A_{\mathsf{FB}}^{tar{t}} = rac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

 $y = \frac{1}{2} \ln \frac{E + p_z}{E - p}$

A^{tt}_{FB}: Smoking gun for new physics?

$A_{\rm FB}^{t\bar{t}}$ at Tevatron

What does the SM predict?

- No net preference in leading order diagram
- At next-to-leading order (NLO): top quark slightly prefers proton direction (forward)
 →Interference among diagrams

- We compare to $A_{FB}^{t\bar{t}}$ (NLO SM) = 0.088 \pm 0.006 (PRD **86**,034026 (2012))
- However, different SM calculation gives different answers and uncertainties
- SM calculation still progressing

$A_{\text{FB}}^{t\bar{t}}$ at Tevatron

- Previous experimental results?
 - CDF: $A_{FB}^{t\bar{t}} = 0.164 \pm 0.047$ (PRD **87**, 092002 (2013))
 - D0: $A_{FB}^{t\bar{t}} = 0.106 \pm 0.030$ (arXiv:1405.0421)
- Measured result from CDF in tension with SM prediction, with result from D0 in between
- Perhaps more important: A^{tt̄}_{FB} vs. m_{tt̄} deviates from SM prediction
- Anomalously large $A_{FB}^{t\bar{t}} \rightarrow$ Smoking gun for new physics?

Introduction

$A_{\text{FB}}^{t\bar{t}}$ at Tevatron

Possible alternative hypotheses?

Models beyond the SM can predict large $A_{FB}^{t\bar{t}}$

- Axigluons
- Flavor-changing Z' boson
- Beyond-SM W' boson
- Beyond-SM Higgs boson
- Extra dimensions

How to look for more evidence for/against

new physics?

 $A_{\rm FR}^{t\bar{t}}$ at Tevatron

Pursue in two directions

- Measure A^{tt̄}_{FB} with more tt̄ events in other final states
- Measure other related observables

Top-Quark Pair Decay Modes • How does top quark decay?

- t
 ightarrow Wb almost 100% of time
- Three types of final states based on *W* decay mode:

Top-Quark Pair Decay Modes • How does top quark decay?

- $t \rightarrow Wb$ almost 100% of time
- Three types of final states based on *W* decay mode:
 - All hadronic←Difficult channel
 - Large branching fraction
 - Hard to determine jet energy/charge
 - Hard to reconstruct $t\bar{t}$

Top-Quark Pair Decay Modes

- How does top quark decay?
- t
 ightarrow Wb almost 100% of time
- Three types of final states based on *W* decay mode:
 - All hadronic←Difficult channel
 - Large branching fraction
 - Hard to determine jet energy/charge
 - Hard to reconstruct $t\bar{t}$
 - Lepton+jets←Previous result
 - Decent branching fraction
 - Lepton provides additional handle

Top-Quark Pair Decay Modes

- How does top quark decay?
- t
 ightarrow Wb almost 100% of time
- Three types of final states based on *W* decay mode:
 - All hadronic←Difficult channel
 - Large branching fraction
 - Hard to determine jet energy/charge
 - Hard to reconstruct $t\bar{t}$
 - Lepton+jets←Previous result
 - Decent branching fraction
 - Lepton provides additional handle
 - Dilepton \leftarrow Focus of this talk
 - Small branching fraction
 - Leptons precisely measured
 - Two ν 's, hard to reconstruct $t\bar{t}$

Additional $t\bar{t}$ events in dilepton

- Previous measurement based on lepton+jets final state
- Can measure $A_{FB}^{t\bar{t}}$ in dilepton

- Independent dataset with extended detector coverage, different background constitution and estimation methods
- Need to reconstruct 4-momentum of $t\bar{t}$
 - \rightarrow Tough job in dilepton
- More on this later

Other observables?

- Two equally important observables with leptons
- Leptonic A_{FB}

$$egin{aligned} & \mathcal{A}_{\mathsf{FB}}^\ell = rac{N(q_\ell\eta_\ell>0)-N(q_\ell\eta_\ell<0)}{N(q_\ell\eta_\ell>0)+N(q_\ell\eta_\ell<0)} \end{aligned}$$

- Also lepton pair ${\it A}_{\rm FB}$ defined with lepton η difference, only in dilepton
- Why consider A_{FB}^{ℓ} ?
 - Lepton angles precisely measured
 - Tend to follow direction of parent tops

A_{FB}^ℓ at Tevatron

- NLO SM prediction: $A_{FB}^{\ell} = 0.038 \pm 0.003$
- Prediction with new physics?
- Based on CDF $A_{FB}^{t\bar{t}}$ result (0.16 \pm 0.05), assuming everything else SM-like: $0.070 < A_{FB}^{\ell} < 0.076$
- In new physics models, A^{tt}_{FB} and A^ℓ_{FB} are **not correlated**.
- Independent measurements of $A_{\rm FB}^{t\bar{t}}$ and $A_{\rm FB}^{\ell}$ are crucial


```
Example:

Axigluon model

(m = 200 GeV/c<sup>2</sup>, \Gamma = 50 GeV)

\rightarrow A_{FB}^{t\bar{t}} = 0.12

-0.06 < A_{FB}^{\ell} < 0.15

depending on handedness of

couplings

(PRD 87,034039 (2013))
```


•
$$A_{\mathsf{FB}}^{\ell\ell} = rac{N(\Delta\eta > 0) - N(\Delta\eta < 0)}{N(\Delta\eta > 0) + N(\Delta\eta < 0)}$$

- Only defined in dilepton, smaller statistics
- Provide extra information to help constraining new physics models

A^ℓ_{FB} at Tevatron

• Measurement of A_{FB}^ℓ in lepton+jets at CDF

 $A_{\text{FB}}^{\ell} = 0.094^{+0.028}_{-0.026}$, PRD **88**, 072003 (2013)

- $\bullet~1.9\sigma$ larger than NLO SM calculation of 0.038 ± 0.003
- Large $A_{\mathsf{FB}}^{t\bar{t}}$ holds in A_{FB}^{ℓ} in the same dataset
- New results presented today:
 - Confirm or deny this anomaly large asymmetry $(A_{\text{FB}}^{t\bar{t}})$ and A_{FB}^{ℓ} with the dilepton final state
 - Measure $A_{\text{FB}}^{\ell\ell}$
 - What is the best-word-understanding of the A_{FB} results?

Tevatron and CDF

Tevatron

FERMILAB'S ACCELERATOR CHAIN

• *pp* collider

- Center-of-mass energy 1.96 TeV
- \bullet Run II delivered $12 {
 m fb}^{-1}$
- \bullet Acquired $\sim 10 {\rm fb}^{-1}$ by CDF

Tevatron and CDF

CDF

- General purpose detector
 - Solenoid (1.4 T magnetic field)
 - Tracking system
 - Calorimeter system
 - Muon detectors
- Coverage in $t\bar{t}$ dilepton
 - Electron: $|\eta| < 2.0$
 - Muon $~:~ |\eta| < 1.1$
 - Jets : $|\eta| < 2.5$

 $tar{t}
ightarrow {\sf dilepton}$

- A_{FB} measurement in lepton+jets: *done*
- Go after the next important final state: $t \overline{t}
 ightarrow$ dilepton

 $t \overline{t}
ightarrow$ dilepton Event selection

• Need a sample enriched by $t\bar{t}$ events with dilepton signature:

$t \overline{t} ightarrow$ dilepton Event selection

- Need a sample enriched by $t\bar{t}$ events with dilepton signature:
 - Two opposite charged leptons

$tar{t} ightarrow$ dilepton Event selection

- Need a sample enriched by $t\bar{t}$ events with dilepton signature:
 - Two opposite charged leptons
 - At least two jets

$t\overline{t} ightarrow$ dilepton Event selection

• Need a sample enriched by $t\bar{t}$ events with dilepton signature:

$t\overline{t} ightarrow dilepton$ Event selection

- Need a sample enriched by $t\bar{t}$ events with dilepton signature:
 - Two opposite charged leptons
 - At least two jets
 - $\not\!\!\!E_T > 25~{
 m GeV}$
- Use slightly improved *tt* → dilepton data selection criteria (datails in the backups)

$t\bar{t} \rightarrow dilepton$

Signal and background modeling

• Signal modeling:

- Prediction with POWHEG MC (NLO SM with QCD correction)
- Background modeling:
 - Diboson production (WW, WZ, ZZ, Wγ)
 MC prediction
 - Z/γ^* +jets MC prediction with correction from data
 - W+jets
 - Data-based
 - *t* \overline{t} non-dilepton
 - $Prediction \ with \ {\rm POWHEG} \ MC$

• Agreement is excellent (Maybe too good? Probably luck)

Source	Events	
Diboson	31.4±5.9	
$Z/\gamma^*+{ m jets}$	$50.5{\pm}6.2$	
W+jets fakes	64±17	
$t\overline{t}$ non-dilepton	$14.6{\pm}0.8$	
Total background	160±21	
$t\overline{t}~(\sigma=7.4~{ m pb})$	408±19	
otal SM expectation	568±40	
Observed	569	

_

_

 $t\overline{t}
ightarrow {
m dilepton}$

- Hard to reconstruct of 4-momentum of $t\bar{t}$ in dilepton
- Measure A_{FB}^{ℓ} and $A_{\text{FB}}^{\ell\ell}$ first
- Continue with the full $A_{FB}^{t\bar{t}}$ afterwards

Alternative Signal Modeling

- What does the η_ℓ spectra look like in various scenarios?
 - Test the measurement with both SM and BSM models
- Simulate $t\bar{t}$ in various $t\bar{t}$ production mechanisms
 - \bullet SM sample: <code>PYTHIA/ALPGEN</code> (LO) and <code>POWHEG</code> (NLO)
 - Benchmark BSM model w/ axigluon
 - Many more simulated and studied
- Span large range of A_{FB}^ℓ and $A_{\mathsf{FB}}^{\ell\ell}$

Model	$A_{\rm FB}^\ell$ (Parton Level)	$A_{\text{FB}}^{\ell\ell}$ (Parton Level)	Description		
AxiL	-0.063(2)	-0.092(3)	Left-handed	$\begin{array}{l} \mbox{Tree-level axigluon} \\ \mbox{m} = 200 \ {\rm GeV}/{\rm c}^2 \\ \mbox{\Gamma} = 50 \ {\rm GeV} \end{array}$	
AxiR	0.151(2)	0.218(3)	Right-handed		
Axi0	0.050(2)	0.066(3)	Unpolarized		
ALPGEN	0.003(1)	0.003(2)	Tree-level Standard Model		
PYTHIA	0.000(1)	0.001(1)	LO Standard Model		
POWHEG	0.024(1)	0.030(1)	NLO Standard Model		
Calculation	0.038(3)	0.048(4)	NLO SM (PRD 86 034026 (2012))		

$A_{\sf FB}^\ell$ measurement methodology $A_{\sf FB}^\ell$ Methodology - Introduction

- Difference among models are small
 - Shapes almost identical, tiny shift in the mean
- Acceptance in detector limited
 - No acceptance beyond $|q_\ell \eta_\ell|=2$
- Need a clever way to measure the subtle difference

Ziqing Hong (Texas A&M University)

A_{FB}^{ℓ} Methodology - Introduction

• $\mathcal{S}(q_{\ell}\eta_{\ell})$ consistent among models

A_{FB}^{ℓ} Methodology - Introduction

- $S(q_{\ell}\eta_{\ell})$ consistent among models
- $\mathcal{A}(q_{\ell}\eta_{\ell})$ very different for different models
 - Sensitive to different values of A_{FB}^ℓ

A_{FB}^{ℓ} Methodology - Introduction

$A_{\sf FR}^{\ell}$ Measurement Methodology

- A_{FR}^{ℓ} rewritten as $A_{\mathsf{FB}}^{\ell} = \frac{\int_{0}^{\infty} \mathrm{d}q_{\ell}\eta_{\ell}\mathcal{A}(q_{\ell}\eta_{\ell})\mathcal{S}(q_{\ell}\eta_{\ell})}{\int_{0}^{\infty} \mathrm{d}q'_{\ell}\eta'_{\ell}\mathcal{S}(q'_{\ell}\eta'_{\ell})}$ ℓ+lets Data • A_{FR}^{ℓ} measurement in lepton+jets 0 $\pm 1\sigma(stat, +sus.)$ CDF Run II Preliminary ($\mathcal{L} = 9.4/fb$ 0.2 based on this decomposition and 0.1 P B P $a \cdot \tanh(\frac{1}{2}q_{\ell}\eta_{\ell})$ modeling -0.3 $A_{
 m FR}^\ell = 0.094^{+0.032}_{-0.029}$ -0.2L 04 0.6 |qy_| • 1.9 σ larger than SM
 - PRD 88 072003 (2013), CDF

Fit A(qy)

 $\pm 1\sigma(stat.)$

$A_{\rm FB}^{\ell}$ Methodology Study

• Double-Gaussian does better job in modeling differential asymmetry in large $q_{\ell}\eta_{\ell}$ region

• $\mathcal{A}(q_{\ell}\eta_{\ell})$ still most sensitive way to measure $\mathcal{A}_{\mathsf{FB}}^{\ell}$

- Provides better effective measure of mean
- Acceptance of detector mostly cancels out

A_{FB}^{ℓ} measurement methodology

$A_{\rm FB}^{\ell}$ Methodology Study

- Another way of looking at data: Differential contribution to $A_{\rm FB}^\ell$
- What do we learn?
 - ullet Asymmetry mostly from $|\eta| < 2.0$
 - Best detector coverages here

•
$$a \cdot \tanh\left(rac{1}{2}q_\ell \eta_\ell\right)$$
 is excellent for $|q_\ell \eta_\ell| < 2.5$

- Mismodeling in region with small contribution
- More than good enough
- Moving forward with a · tanh model with confidence

A_{FB}^{ℓ} Methodology - Introduction

• $a \cdot \text{tanh}$ model works well at parton level

• Does detector response affect the measurement?

measurement methodolog

A_{FB}^{ℓ} Methodology with Detector Response

- Detector response mostly cancels out in $\mathcal{A}(q_\ell\eta_\ell)$
- No noticeable bias observed
- Measurement strategy:

 A_{FR}^{ℓ} measurement methodology

- Subtract off backgrounds
- Fit $\mathcal{A}(q_{\ell}\eta_{\ell})$ with $a \cdot \tanh\left(\frac{1}{2}q_{\ell}\eta_{\ell}\right)$
- Obtain $\mathcal{S}(q_\ell \eta_\ell)$ from POWHEG simulation at parton-level
- Calculate A_{FB}^ℓ with \mathcal{A} & \mathcal{S}
- Correct for detector response and extrapolate to inclusive $A_{\rm FB}^{\ell}$ simultaneously

A_{FB}^{ℓ} in dilepton

- Measure A_{FB}^ℓ with CDF full dataset in dilepton (9.1 fb^{-1})
 - $$\begin{split} \mathcal{A}^{\ell}_{\mathsf{FB}} &= 0.072 \pm 0.052(\mathsf{stat}) \pm 0.030(\mathsf{syst}) \\ &= 0.072 \pm 0.060 \end{split}$$
 - Cf. $\textit{A}^{\ell}_{FB}(SM,NLO) = 0.038 \pm 0.003$
- Dominant uncertainty is statistical
- Table of systematic uncertainty in backup
- Result consistent with prediction of new physics from lepton+jets, but also consistent with SM

- Measurement techniques validated for $A_{\text{FR}}^{\ell\ell}$ as well.
- Measure $A_{\text{FB}}^{\ell\ell}$ with the same method

$$\begin{split} \mathcal{A}_{\mathsf{FB}}^{\ell\ell} &= 0.076 \pm 0.072 (\mathsf{stat}) \pm 0.039 (\mathsf{syst}) \\ &= 0.076 \pm 0.081 \end{split}$$

- Cf. $A_{ER}^{\ell}(SM, NLO) = 0.048 \pm 0.004$
- Dominant uncertainty is statistical a
- Result consistent with SM

$A_{\rm FB}^{\ell}$ combination at CDF

- Combined A_{FB}^{ℓ} measurements at CDF
- Based on *best linear unbiased estimator* (BLUE)
- Result is 2σ larger than NLO SM prediction:

 $A_{\rm FB}^\ell = 0.090^{+0.028}_{-0.026}$

• Paper accepted by PRL (arXiv:1404.3698, CDF).

$A_{\text{FB}}^{t\bar{t}}$ in dilepton and CDF combination

- Observed large A_{FB}^{ℓ} in dilepton as well, continue pursuing $A_{FB}^{t\bar{t}}$ measurement in dilepton
- Then $A_{\text{FB}}^{t\bar{t}}$ combination at CDF

Analysis in progress!

Prospects for a final Tevatron combination

- D0 recently released measurements of A_{FB}^{ℓ} , $A_{FB}^{\ell\ell}$ and $A_{FB}^{tar{t}}$
 - Results from D0 smaller, consistent with both CDF and SM

Prospects for a final Tevatron combination

- Total values agree within errors
- Differential distributions have inconsistencies
 - This might account for the differences
- Both experiments working to understand the differences
 - Are the two experiments measuring the same observables?
 - Different techniques causing bias in either/both experiments?
 - Statistical fluctuation?
- Plan: understand the difference and make Tevatron combinations of A_{FB}^{ℓ} , $A_{\text{FB}}^{\ell\ell}$ and $A_{\text{FB}}^{t\bar{t}}$

- The *A*_{FB} of top-pairs at the Tevatron continue to be tantalizing
- Measurements of $A_{FB}^{t\bar{t}}$, A_{FB}^{ℓ} and $A_{FB}^{\ell\ell}$ provide complementary handles to probe the production and decay of $t\bar{t}$
- A_{FB}^{ℓ} at CDF shows 2σ deviation from NLO SM
- Measurement of $A_{FB}^{t\bar{t}}$ in dilepton in progress
- Understanding the difference between CDF and D0 measurements
 - Looking forward to a final word on this important question from Tevatron as it isn't clear if it can be resolved at the LHC

Backup slides

Backup Slides

$t \overline{t} ightarrow$ dilepton event selection criteria

	Exactly two leptons with $E_{\rm T}>20~{\rm GeV}$ and passing standard identification requirements with following modifications	
		-COT radius exit $>$ 140 cm for CMIO
		$-\chi^2/ndf < 2.3$ for muon tracks
ų	ŋ	At least one trigger lepton
ŧ		At least one tight and isolated lepton
aline		At most one lepton can be loose and/or non-isolated
Bace		$\not\!\!\!E_T > 25 \text{ GeV}$, but $\not\!\!\!E_T > 50 \text{ GeV}$ when there is any lepton or jet within 20° of the direction of $\not\!\!\!E_T$
		MetSig $(=\not\!$
		$\rm m_{ll} > 10~GeV/c^2$
ignal Cuts		Two or more jets with $E_{ m T} > 15~{ m GeV}$ within $ \eta < 2.5$
	Cuts	${\rm H_T} > 200~{\rm GeV}$
S S		Opposite sign of two leptons

$t\overline{t} \rightarrow dilepton$ Signal and background modeling Validation

Agreement is excellent

Systematic uncertainty of A_{FB}^{ℓ} measurement

CDF Run II Preliminar	CDF Run II Preliminary (9.1 ${ m fb}^{-1}$)		
Source of Uncertainty	Value		
(\mathcal{A}^ℓ_{FB})			
Backgrounds	0.029		
Asymmetric Modeling	0.006		
Jet Energy Scale	0.004		
Symmetric Modeling	0.001		
Total Systematic	0.030		
Statistical	0.052		
Total Uncertainty	0.060		

Systematic uncertainty of $A_{\text{FB}}^{\ell\ell}$ measurement

CDF Run II Preliminar	CDF Run II Preliminary (9.1 ${ m fb}^{-1}$)		
Source of Uncertainty	Value		
$(\mathcal{A}_{FB}^{\ell\ell})$			
Backgrounds	0.037		
Asymmetric Modeling	0.012		
Jet Energy Scale	0.003		
Symmetric Modeling	0.004		
Total Systematic	0.039		
Statistical	0.072		
Total Uncertainty	0.082		

Comparison of A_{FB}^{ℓ} among SM prediction and measurements at CDF and D0.

Source	A_{FB}^ℓ	Description	Reference	
Calculation	0.038±0.003	NLO SM	PRD 86,034026 (2012)	
	$0.094\substack{+0.032\\-0.029}$	Lepton+jets	PRD 88 072003 (2013)	
CDF	0.072 ± 0.060	Dilepton	Accepted by PRL	
	$0.090\substack{+0.028\\-0.026}$	Combination	arXiv:1404.3698	
D0	$0.042\substack{+0.029\\-0.030}$	Lepton+jets, $ q_\ell\eta_\ell < 1.5$	arXiv:1403.1294	
DU	$\textbf{0.044} \pm \textbf{0.039}$	Dilepton	PRD 88, 112002 (2013)	
	0.047 ± 0.027	Combination	arXiv:1403.1294	

A_{FB}^{ℓ} CDF combination

CDF Run II Preliminary

Source of uncertainty	L+J (9.4fb^{-1})	DIL (9.1fb^{-1})	Correlation
Backgrounds	0.015	0.029	0
Recoil modeling (Asymmetric modeling)	$+0.013 \\ -0.000$	0.006	1
Symmetric modeling	-	0.001	
Color reconnection	0.0067	-	
Parton showering	0.0027	-	
PDF	0.0025	-	
JES	0.0022	0.004	1
IFSR	0.0018	-	
Total systematic	$+0.022 \\ -0.017$	0.030	
Statistics	0.024	0.052	0
Total uncertainty	$+0.032 \\ -0.029$	0.060	

$t\bar{t}$ Reconstruction Equations

$$\begin{split} M_{l^+\nu}^2 &= (E_{l^+} + E_{\nu})^2 - (\vec{p}_{l^+} + \vec{p}_{\nu})^2 = M_W^2 \\ M_{l^-\bar{\nu}}^2 &= (E_{l^-} + E_{\bar{\nu}})^2 - (\vec{p}_{l^-} + \vec{p}_{\bar{\nu}})^2 = M_W^2 \\ M_{l^+\nu b}^2 &= (E_{l^+} + E_{\nu} + E_b)^2 - (\vec{p}_{l^+} + \vec{p}_{\nu} + \vec{p}_b)^2 = M_t^2 \\ M_{l^-\bar{\nu}\bar{b}}^2 &= (E_{l^-} + E_{\bar{\nu}} + E_{\bar{b}})^2 - (\vec{p}_{l^-} + \vec{p}_{\bar{\nu}} + \vec{p}_{\bar{b}})^2 = M_t^2 \\ (\vec{p}_{\nu} + \vec{p}_{\bar{\nu}})_x &= (\vec{E}_T)_x \\ (\vec{p}_{\nu} + \vec{p}_{\bar{\nu}})_y &= (\vec{E}_T)_y \end{split}$$

$$\begin{split} \mathcal{L}(\vec{p}_{\nu}, \vec{p}_{\bar{\nu}}, E_{b}, E_{\bar{b}}) = & P(p_{z}^{t\bar{t}}) P(p_{T}^{t\bar{t}}) P(M^{t\bar{t}}) \times \\ & \frac{1}{\sigma_{jet1}} \exp\left(-\frac{1}{2} \left(\frac{E_{jet1}^{measure} - E_{jet1}^{fit}}{\sigma_{jet1}}\right)\right) \times \frac{1}{\sigma_{jet2}} \exp\left(-\frac{1}{2} \left(\frac{E_{jet2}^{measure} - E_{jet2}^{fit}}{\sigma_{jet2}}\right)\right) \\ & \frac{1}{\sigma_{x}^{f\bar{t}}\tau} \exp\left(-\frac{1}{2} \left(\frac{f_{x}^{measure} - f_{x}^{fit}}{\sigma_{x}^{f}\tau}\right)\right) \times \frac{1}{\sigma_{y}^{f\bar{t}}\tau} \exp\left(-\frac{1}{2} \left(\frac{f_{y}^{measure} - f_{y}^{fit}}{\sigma_{y}^{f}\tau}\right)\right) \end{split}$$

- The ratio of $A_{FB}^{t\bar{t}}/A_{FB}^{\ell}$ observed to be consistent when $t\bar{t}$ produced unpolarized and decay like SM
- Based on CDF $A_{FB}^{t\bar{t}}$ result (0.16 ± 0.05), this yields prediction of 0.070 < A_{FB}^{ℓ} < 0.076