

Searching for low-mass dark matter with SuperCDMS

Ray Bunker Syracuse University

The SuperCDMS Collaboration

Syracuse University

NGT

NIST Inst. of Tech.

Texas A&M University

Southern Methodist U.

Queen's University

U. British Columbia

Plit

Mass. Inst. of Tech.

Santa Clara University

Outline

I. Introduction

- a) SuperCDMS direct-detection technique
- b) Demonstrated background discrimination

II. SuperCDMS Soudan

- a) Run description
- b) High-voltage-bias operation (CDMSlite)
- c) Low-threshold analysis

III. SuperCDMS SNOLAB

- a) Improvements *vs.* Soudan
- b) Projected reach

IV. Radon Mitigation & Assay

- a) Vacuum-swing absorption filtering
- b) Emanation assay & the BetaCage

V. Conclusions

Neutral **Direct detection**

Electrically Charged Particle

WIMPs and Neutrons scatter from the **Atomic Nucleus**

Slow **N**uclear **R**ecoil (NR), deposits energy over short distance

 Particle

Photons and Electrons scatter from the **Atomic Electrons**

Fast **E**lectron **R**ecoil (ER), deposits energy over large distance

4 Ray Bunker - Syracuse University

Courtesy M. Attisha

CDMS technique - (ionization)& phonons

Ray Bunker - Syracuse University 5

SuperCDMS technique — the iZIP

Ray Bunker - Syracuse University

SuperCDMS background rejection

Surface-event Rn-daughter sources placed above and below 2 detectors (*in situ* @ Soudan) 50 live days \rightarrow 0 of 132,968 leaked surface events in (symmetric) NR signal region \rightarrow Good enough rejection for proposed SuperCDMS SNOLAB (100 kg, σ_{χ-N}< 8 x 10⁻⁴⁷ cm² for 60 GeV/c² dark matter)

Appl.Phys.Lett. 103 (2013) 164105 [arXiv:1305.2405]

Ray Bunker - Syracuse University 7

SuperCDMS Soudan

5 Super Towers of Ge iZIPs

3 iZIPs per tower, 0.6 kg each \rightarrow total mass of 9 kg Installed in CDMS II shielding end of 2011 Fully operational since early 2012 Science run ends this summer.

Low-mass Search Strategies

Ge is a relatively heavy nucleus → Go as low in threshold as possible

$CDMS$ lite \rightarrow

Special bias configuration & readout Extra-low threshold: $<$ 1 keV_{nr} Target masses: < 10 GeV/*c* 2

Event rate [keV

vent rate

 -1 kg

ਰ
ਜ -1 —

Low-threshold (LT) analysis \rightarrow

Low threshold: $≈1.6$ keV_{nr} Use improved iZIP fiducial volume Target masses: < 20 GeV/*c* 2

SuperCDMS Soudan — CDMSlite

CDMSlite result

SuperCDMS SNOLAB CDMSlite \rightarrow even lower threshold via: Lower backgrounds, improved electronics, higher voltage & superior resolution

SuperCDMS Soudan — LT analysis

T2Z1

T4Z2

T1Z1

 $4.6 \text{ keV}_{\text{nr}}$ 4.7 keV _{nr} 1.5 keV _{nr} Normal ±2V bias configuration WIMP search \rightarrow Oct 2012 – July 2013 1110 1113 577 kg-day *blinded* exposure **Tower 3 T5Z2** 104 **Comslite** 2.0 keVn 1108 **Sources** ER calibration throughout via ¹³³Ba <mark>? keVe</mark>V_{nr} 1102 NR calibrations via ²⁵²Cf **T5Z3** 105 1.7 ke V_{nr} \rightarrow 97 kg-day open dataset 1103 106 **T4Z3 T2Z2** 1.7 ke V_{nr} 1.8 ke V_{nr} 7 detectors w/ lowest trigger thresholds **Post-Cf periods** \rightarrow ~1.6 to 5 keV_{nr} (detector & time dependence) **500 Integrated raw live time [days] Total WIMP search 400 Calibration** Note: 2 special-case detectors **300**
 200
 Mar 14, 2012 Sep 17, 2012 Mar 22, 2013 Sep 25, 2013 Mar 30, 2014 300 \rightarrow T5Z2 in 2013 had noisy S1 Q guard \rightarrow T5Z3 has S1 Q guard not biased **200 100** SuperCDMS LT

LT-analysis backgrounds

LT-analysis backgrounds

 12

LT-analysis backgrounds

8

- Detector activation from cosmics & thermal-neutron capture
- X-rays & Auger electrons from ^{68,71}Ge, ⁶⁵Zn, ⁶⁸Ga L-shell e– capture
- Detector response via pulse simulation
- Also, radiogenic & cosmogenic neutron backgrounds \rightarrow but irreducible & rate is very low

simulation

 12

 $10¹$

• Signal region blinded & no calibration for ²¹⁰Pb-sourced sidewall events \rightarrow ²¹⁰Pb decay-chain simulation systematics not yet understood in detail \rightarrow Before unblinding, chose to set upper limit based on any candidates

β

detector

LT-analysis BDT

LT-analysis detection efficiency

Remove:

→ bad data periods (*e.g.* noise)

→ incorrect pulse shapes (*e.g.* glitches) Efficiency via pulse-shape simulation

Apply trigger & analysis thresholds $\rightarrow \approx 1.5 - 5 \text{ keV}_{\text{nr}}$ Efficiency measured from ¹³³Ba calibration ERs

Single-detector events only No activity in muon veto Loose ionization-based 3D fiducial volume NR-consistent ionization energy

Final selection optimized on energy & phonon position estimators Efficiency measured together with preselection using ²⁵²Cf passage fraction & Geant4 sim to correct fiducial volume for differences between neutrons & DM particles

1σ band includes uncertainties in:

- Trigger efficiency
- Fiducial volume (stat. & syst.)
- NR energy scale

LT-analysis unblinding (before BDT)

LT-analysis unblinding (after BDT)

11 candidate events pass all cuts! $(6.1^{+1.1}_{-0.8}$ expected) –0.8

3 with unexpectedly high energies \rightarrow all in T5Z3 w/ altered E-field

LT-analysis unblinding (after BDT)

11 candidate events pass all cuts! $(6.1^{+1.1}_{-0.8}$ expected) –0.8

3 with unexpectedly high energies \rightarrow all in T5Z3 w/ altered E-field

95% confidence contours for expected signal from **5**, **7**, **10** & **15** GeV/*c* ² DM

LT-analysis post-unblinding comparison

Overall, 11 candidate events are consistent w/ background expectation & most individual detectors agree w/ model

Altered electric field on T5Z3 may have affected background-model performance *further investigation in progress*

Quality + Thresholds + Preselection Number of events / 0.04 · Data **p-value = 14%** $10²$ $DM \rightarrow 10$ GeV/ c^2 Sidewall²⁰⁶Pb Sidewall²¹⁰Pb+²¹⁰Bi Face ²¹⁰Ph+²¹⁰Bi 1.3 keV line 10 Comptons Residual 40 20 -20 -40 -0.5 0.5 **BDT** score

Background model agrees well with events observed in preselection region \rightarrow p-values = 8–26% for 4 DM masses

Ray Bunker - Syracuse University 20

LT-analysis result

95% C.L. uncertainty band (trigger, energy scale, fiducial volume)

Next generation \rightarrow SuperCDMS SNOLAB

Larger target mass:

More & larger iZIPs Cryostat large enough for 400 kg **Si & Ge crystals** 1 tower in CDMSlite configuration \rightarrow also with Si & Ge

Lower background:

New facility at deeper site Cleaner materials selection Active neutron veto

Improved signal readout:

Phonons \rightarrow new SQUID arrays Ionization \rightarrow switch to HEMTs Improved tower design

Improved resolution:

 σ_{phonon} \propto T_c³ \rightarrow lower operating temp 42 eV demonstrated (>4x better) Improved cryogenics could give >100x improvement!

2 ionization + 2 ionization 4 phonon + 4 phonon

SuperCDMS Soudan SuperCDMS SNOLAB

3.3 cm thick 4"diameter 1.4 kg Ge / 615 g Si

2 ionization + 2 ionization 6 phonon $+6$ phonon

⁵ towers of 3 iZIPs each 2 towers of 6 iZIPs each

Beyond SuperCDMS Soudan

Background Reduction

- Step $1 \rightarrow$ Bulk gamma background via cleaner copper … 220x lower \rightarrow Based on levels achieved by DEAP/CLEAN and XENON100
- Step $2 \rightarrow$ Rn-sourced backgrounds, primarily at high radius \rightarrow copper housings ... 22x lower via cleaner handling & storage

Further improvement \rightarrow

- Superior resolution via lower Tc's
- Fiducialization
- Lower energy thresholds

Dependent on detector mode!

SuperCDMS SNOLAB expected sensitivity

Ray Bunker - Syracuse University 24

SuperCDMS SNOLAB expected sensitivity

Beyond SuperCDMS Soudan

Plans for Radon Exclusion

Protect detector and nearby copper surfaces from exposure to Rn!

- Use standard etching techniques to clean copper surfaces
- Radiopurity of Ge & Si substrates already sufficient for SNOLAB sensitivity
- Improved procedures to limit exposure during payload assembly
- Radon-mitigated clean room underground at SNOLAB \rightarrow To prevent contamination during detector installation

Looking toward the future and G3:

• More robust protection while in storage

 \rightarrow Use radon emanation measurements to study storage cabinets & purge packaging

 \rightarrow Commission & operate Rn-emanation system

• Development of BetaCage detector

 \rightarrow More sensitive screening of α- & β-emitting surface contaminants (*i.e.*, Rn daughters)

Radon Mitigation Systems

Continuous flow: Swing flow:

- Most Rn decays before exiting carbon breakthrough time
- $C_{\text{final}} = C_{\text{initial}} \exp[-t/t_{\text{Rn}}]$ → Assuming ideal column
Notational Rn lifetime
- Relatively simple & robust
- Need to cool carbon to be effective *Ateko commercial system effective for NEMO*

- Stop gas flow well before breakthrough
	- *Use at least 2 columns:*
		- \rightarrow Regenerate column #1 \rightarrow Flow through column #2
- $C_{final} = 0$ *Assuming ideal column*
- More complicated
- Vacuum-swing: *Potentially better performance than continuous system at lower cost* **→ A. Pocar, LRT2004 (Borexino)**
- Temperature-swing:
	- *Expect best performance at highest cost* **→ A. Hallin, LRT2010**

Radon Mitigation Systems

Hardware only

Vacuum-Swing Absorption (VSA)

- Takes advantage of greater adsorption capacity at high pressures:
	- **Regenerate carbon by flowing small** fraction f of gas mass flow F back through tank at low purge pressure
	- Volume purge flow ϕ_{pure}

$$
\phi_{pure} = \frac{P_{atm}}{P_{pure}} f \cdot F = \frac{f \cdot P_{atm}}{P_{pure}} \phi_{feed}
$$

Push back radon front if:

$$
G \equiv \frac{\phi_{purge}}{\phi_{feed}} = \frac{f \cdot P_{atm}}{P_{pure}} > 1
$$

Syracuse system, $f \approx 10\%$ with $P_{\text{pure}} \approx 2.5$ Torr $\rightarrow G \approx 30$ (ideally)

Activated-Carbon Columns

Calgon Coconut Activated Carbon Product OVC Plus 4x8 (mesh) Multiply rinsed, then dried under high-flow fume hoods

Two Identical Stainless-steel Vacuum Vessels Filled with ~150 kg each & Spring Loaded

31 **Opened up tank after first month commissioning, found carbon still in good shape & well packed.**

The VSA Radon Filter

The VSA Radon Filter

Initial Performance at Filter Output

Optimizations in 2013-2014

Increased robustness of system:

• Overcame difficulty of roughing pump to handle high humidity of upstate NY in summer

Identified & reduced leaks all along system:

• Still limited by leaks in clean-room HVAC when HVAC circulation is on

The BetaCage Concept

- Goal is for 100x more sensitive surface β screening
- Radiopure time projection chamber
- Wires provide minimum surface area for emissions
- Crossed grids ≈mm *xy* position information

- Can screen for ^{210}Pb β 's promptly, without waiting for ²¹⁰Po grow-in
- Sensitivity goals are: (Bunker LRT2013) \rightarrow 0.1 β /keV/m²/day \rightarrow 0.1 α /m²/day
- Smaller-sized prototype should have essentially zero background for α 's

The BetaCage Prototype

• 2 40x40-cm² MWPCs around 20-cm field-cage \rightarrow Trigger MWPC & imaging "bulk" MWPC

- Characterized with ⁵⁵Fe X-rays
	- Achieved intrinsic resolution of ≈14% *vs* ideal 12-13% from Fano & avalanche statistics → JINST 9 (2014) P01009
- Stability to voltage & pressure variations consistent with Diethorn formalism

Conclusions

SuperCDMS Soudan

CDMSlite demonstrates utility of Luke-amplified phonons for low-mass DM

- *PRL 112 (2014) 041302 with 170 eVee threshold*
- \rightarrow Better measure of backgrounds with 2nd run

577 kg-day low-threshold analysis sets 90% C.L. limit of 1.2x10-42 at 8 GeV/*c* 2

- \rightarrow Rules out DM interpretation of CoGeNT excess, also for standard-halo spin-independent interpretations of CDMS II Si, DAMA/LIBRA & CRESST
- → Rules out new parameter space for masses < 6 GeV/ c^2 ; *PRL 112 (2014) 241302*

SuperCDMS SNOLAB

Lower backgrounds, improved resolution, lower energy thresholds:

 \rightarrow unique discovery potential for WIMP masses 1-10 GeV/ c^2

CDMSlite tower with high-gain, low-noise operation:

 \rightarrow extremely low thresholds for world leading light-WIMP sensitivity from 0.3-5 GeV/ c^2 Radon exclusion critical to achieve background goals:

 \rightarrow VSA technique is viable alternative to more expensive continuous-flow filter

Backup slides

2) Asymmetric Dark Matter

- Kaplan et al
	- 0901.4117
	- Rooted in Technicolor
- Relic Density Determined by Asymmetry Magnitude (NOT Freeze Out)
- No Power Injection at low Z-> No distortion of CMB
- "ADM Miracle"

$$
- \Omega_{DM} \sim 5 \Omega_B \rightarrow M_{DM} \sim 5 M_B
$$

- M_{DM} \sim 5 GeV
 Caurtesy M. Pyle

SuperCDMS iZIP

Detector upgrade to CDMS II

2.5x thicker \rightarrow 600 gram Ge crystals with interleaved phonon & ionization sensors

Doubled channel count:

Ionization Sensors (on both sides)

Inner & Outer-guard electrodes Radial partitioning: Outer / (Inner + Outer) *z*-direction partitioning: $(S1 - S2) / (S1 + S2)$ 3D fiducialization with ionization signals alone Near-perfect rejection of surface events for >8 keVr

Phonons Sensors (on both sides)

3 Inner channels + Outer-guard channel Radial partitioning: Outer/(Outer + Σ Inner) z-direction partitioning: $(S1 - S2)/(S1 + S2)$ Better signal to noise for lowest-energy triggers \rightarrow Extend 3D fiducialization to low energy!

Searching for low-mass dark matter

Experiments with lighter targets and lower thresholds have the advantage when looking for dark-matter (DM) particles with mass < 10 GeV/*c* 2

LT-analysis energy scale

Ionization for nuclear recoils measured from ²⁵²Cf data

Total phonon energy = $E_{total} = E_{Luke} + E_{recoil}$ E_{total} is measured with phonons NR equivalent energy = $E_{\text{total}} - E_{\text{Luke,NR}}$ E_{Luke,NR} estimated from mean NR ionization, varies with E_{total} (same as CDMS II low-energy analysis)

Note: we sometimes approximate mean ionization with Lindhard theory because measured values are detector-dependent. This is labeled "Lindhard nuclear recoil energy"; difference is a few %.

CDMSlite Run 1 raw spectrum

LT-analysis pulse simulation

Backgrounds at low energy are more difficult to separate from signal region due to poor signal to noise

Study directly with a pulse simulation, using high energy events in sidebands and calibration data

weight events as a function of energy to match low energy spectrum

LT-analysis backgrounds

²¹⁰Pb-sourced templates:

From WIMP-search sidebands Sidewalls high radius, **mid** & **low** yield Faces \rightarrow inner radius, asymmetric, mid & low yield Dominant systematic uncertainty:

 \rightarrow yield naively extrapolated to low energy Normalized to ²⁰⁶Pb rates at higher energy

 \rightarrow checked with ²¹⁰Po α rates

 \rightarrow difference assigned as systematic uncertainty

External-gamma templates:

From ≈100 keV_{ee} ¹³³Ba calibration events Randomly chosen from WIMP-search period Normalized to WIMP-search sideband:

 \rightarrow 2.6–5.1 keV_{ee} bulk ER rate

Internal activation-line templates:

From WIMP-search sideband K-shell e⁻ captures at \approx 10.4 keV_{ee} \rightarrow same distribution in crystal as L-shell captures Normalize using K-shell rate in sidebands & ratio

of L- to K-shell captures in post-Cf open dataset

LT-analysis by-detector efficiencies

LT-analysis fiducial-volume correction

LT-analysis candidate summary

LT-analysis lowest-energy candidate

LT-analysis background-model uncertainty

LT-analysis BDT inputs *vs.* data

LT-analysis BDT *vs.* WIMP mass

LT-analysis BDT scoring of data

LT-analysis BDT scoring of signal

Ray Bunker - Syracuse University

LT-analysis tower-5 BDTs

Generally good agreement with background model

well-represented by model

LT-analysis exclusion limit (w/o T5Z3)

LT-analysis limit: alternate energy scales

LT-analysis exclusion limits

SuperCDMS Soudan full exposure

Near-zero background WIMP-search

Different strategy:

- \rightarrow higher thresholds
- larger exposure (≈3000 kg-days)
- \rightarrow background from low-rate tails of of surface-event distributions
- \rightarrow expect larger fiducial volume

Analysis effort ongoing!

Use full detector array

SuperCDMS SNOLAB shielding

Assumed bulk contaminant levels no lower than measured by other experiments for easily available radiopure materials

SuperCDMS SNOLAB reach with theory

VSA Cost Breakdown

J. Collar • Based closely on Princeton design for Borexino (*described well in Pocar thesis, and thanks to T. Shutt, A. Hallin, A. Pocar for discussions*)

VSA Comparison: Princeton *vs* Syracuse

Takes 5 minutes to pump down to ≈10 torr (*vs* Princeton ≈1 min)

 \rightarrow So part of cycle is inefficient

VSA Comparison: Princeton *vs* Syracuse

Want large G, big output flow and short cycle times:

Must have G > 1 for system to mitigate at all Note this is not a valid direct comparison

 \rightarrow same G in different systems can be different performance

Ray Bunker - Syracuse University 67

The Syracuse Clean Room

- Designed for 30 cfm low-Rn makup up (0.04" w.g. in overpressure)
- 8 ft x 12 ft x 8 ft high
	- With 4' x 8' anteroom
	- As small as would be practical
- All aluminum panels/extrusions
	- Thick polycarbonate windows
	- Minimize emanation/permeation
	- Very leak tight, eventually (0.25" w.g.)
- HVAC box for re-circulation outside
	- Extensive efforts to make leak tight
- Aged water for humidification
- Fast HEPA filtration: 1 air exchange per 30 s

The Syracuse Clean Room

Air Sampling of Clean Room

Use high-volume air sampling system with Whatman GF/F glass-fiber filters, transfer to Ortec alpha counter to count 218Po, ²¹⁴Po decays and infer airborn concentrations of ²¹⁸Po, ²¹⁴Bi, ²¹⁴Pb

→Indicates clean room ≈10x lower radon daughter concentrations than outside lab prior to radon mitigation

HI-Q Environmental Products CF-901 ~70 lpm sampling rate

Electrostatic Detector Background

Initial rate from fill 100x too large for $LN₂$ boil-off

 \rightarrow 300x lower than our room air

Decayed as expected if no source from chamber leaks or emanation

Reduced by factor 4 as expected when lowered pressure from 1000 to 230 Torr:

> \rightarrow No evidence of chamber leaks/emanation with better sensitivity

60. Po-218 rate Po-214 rate Average Po-peak rate 50 Best-fit half-life = 3.73 ± 0.71 d 40 Counts/day 30 20 10 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 0. 20 60. 100 120 140 O 40. 80. Time since introduction of sample [hours]

Run 65 - Boil-off N2 Background Measurement

Expected BetaCage Photon Background

 10^{-1}

- [a] Community Material Assay Database, radiopurity.org
- [b] U/Th→UMN Gopher HPGe & Caltech ICP-MS; K→UC Davis NAA
- [c] PLOMBUM low-activity lead, www.plombum.republika.pl
- [d] E. Aprile et al., Phys. Rev. D83 (2011) 082001
- [e] SS feedthrough contributes negligibly to beta background

Full background simulation using measured or limited radiopurity of components indicates should be dominated by gammas from Pb shielding: \rightarrow Most challenging component was plastic for wire frames

400

Noryl Frames

Lead

Acrylic
Expected BetaCage Radon Background

Some radon induced events rejected by requiring energy in trigger and bulk but not edge regions:

- But expected background would still dominate w/o mitigation
- 100x improvement sufficient to make subdominant & achievable w/ 30 lpm flow rate through cooled carbon trap
- Keep wire surfaces clean via stringing in Rn-mitigated clean room

Mature Design for Gas Handling System

Fully Strung MWPC Frame

MWPC comprised of 2 cathode layers and a crossed anode layer: 5 mm pitch, 5 mm plane spacing

MWPC frame assembly occurred in a class 1000 clean room

Wires were strung using a custom stringing jig

… roughly 6 minutes per wire.

Spring-loaded feedthroughs

Prototype Setup for X-ray Characterization

Prototype ⁵⁵Fe Spectrum

Typical pulse through Cremat amp With ⁵⁵Fe x-ray source.

Gain \sim 10⁴ with P10 at STP Anode 2100 V, Cathode 100 V Data collected from 55Fe source x-rays Collimated into the central 3-wire channel.

Read into a charge integrating amp and a Slow digitizer.

Nearly ideal intrinsic energy resoluiton!

