

Searching for low-mass dark matter with SuperCDIMS

Ray Bunker Syracuse University

The SuperCDMS Collaboration

NIST Inst. of Tech.

Texas A&M University

Queen's University

Stanford University

U. British Columbia

Plii

Mass. Inst. of Tech.

Santa Clara University

SOUTH DAKOTA U. South Dakota

Outline

I. Introduction

- a) SuperCDMS direct-detection technique
- b) Demonstrated background discrimination

II. SuperCDMS Soudan

- a) Run description
- b) High-voltage-bias operation (CDMSlite)
- c) Low-threshold analysis

III. SuperCDMS SNOLAB

- a) Improvements vs. Soudan
- b) Projected reach

IV. Radon Mitigation & Assay

- a) Vacuum-swing absorption filtering
- b) Emanation assay & the BetaCage

V. Conclusions

Direct detection

Electrically Charged Particle

WIMPs and Neutrons scatter from the Atomic Nucleus

Slow Nuclear Recoil (NR), deposits energy over short distance

Neutral Particle

> Photons and Electrons scatter from the Atomic Electrons

Fast Electron Recoil (ER), deposits energy over large distance

Ray Bunker - Syracuse University

Courtesy M. Attisha

CDMS technique — ionization & phonons

Ray Bunker - Syracuse University

SuperCDMS technique — the iZIP

Ray Bunker - Syracuse University

SuperCDMS background rejection

Surface-event Rn-daughter sources placed above and below 2 detectors (*in situ* @ Soudan) 50 live days \rightarrow 0 of 132,968 leaked surface events in (symmetric) NR signal region \rightarrow Good enough rejection for proposed SuperCDMS SNOLAB (100 kg, $\sigma_{x-N} < 8 \times 10^{-47} \text{ cm}^2$ for 60 GeV/ c^2 dark matter)

Appl.Phys.Lett. 103 (2013) 164105 [arXiv:1305.2405]

Ray Bunker - Syracuse University

SuperCDMS Soudan

5 Super Towers of Ge iZIPs

3 iZIPs per tower, 0.6 kg each → total mass of 9 kg Installed in CDMS II shielding end of 2011 Fully operational since early 2012 Science run ends this summer.

Low-mass Search Strategies

Ge is a relatively heavy nucleus \rightarrow Go as low in threshold as possible

CDMSlite \rightarrow

Special bias configuration & readout Extra-low threshold: $< 1 \text{ keV}_{nr}$ Target masses: $< 10 \text{ GeV}/c^2$ Event rate [keV⁻¹ kg⁻¹ d⁻¹

Low-threshold (LT) analysis \rightarrow

Low threshold: ≈1.6 keV_{nr} Use improved iZIP fiducial volume Target masses: < 20 GeV/c²

SuperCDMS Soudan — CDMSlite

CDMSlite result

SuperCDMS SNOLAB CDMSlite → even lower threshold via: Lower backgrounds, improved electronics, higher voltage & superior resolution

SuperCDMS Soudan — LT analysis

LT-analysis backgrounds

LT-analysis backgrounds

12

13

LT-analysis backgrounds

approx. signal region

10

8

- Detector activation from cosmics & thermal-neutron capture
- X-rays & Auger electrons from ^{68,71}Ge, ⁶⁵Zn, ⁶⁸Ga L-shell e⁻ capture
- Detector response via pulse simulation
- Also, radiogenic & cosmogenic neutron backgrounds \rightarrow but irreducible & rate is very low

simulation

12

 Signal region blinded & no calibration for ²¹⁰Pb-sourced sidewall events \rightarrow ²¹⁰Pb decay-chain simulation systematics not yet understood in detail \rightarrow Before unblinding, chose to set upper limit based on any candidates

detector

LT-analysis BDT

LT-analysis detection efficiency

Remove:

→ bad data periods (e.g. noise)

 \rightarrow incorrect pulse shapes (*e.g.* glitches) Efficiency via pulse-shape simulation

Apply trigger & analysis thresholds $\Rightarrow \approx 1.5-5 \text{ keV}_{nr}$ Efficiency measured from ¹³³Ba calibration ERs

Single-detector events only No activity in muon veto Loose ionization-based 3D fiducial volume NR-consistent ionization energy

 Final selection optimized on energy & phonon position estimators
 Efficiency measured together with preselection using ²⁵²Cf passage fraction & Geant4 sim to correct fiducial volume for differences between neutrons & DM particles

1σ band includes uncertainties in:

- Trigger efficiency
- Fiducial volume (stat. & syst.)
- NR energy scale

LT-analysis unblinding (before BDT)

LT-analysis unblinding (after BDT)

11 candidate events pass all cuts! ($6.1^{+1.1}_{-0.8}$ expected)

3 with unexpectedly high energies \rightarrow all in T5Z3 w/ altered E-field

LT-analysis unblinding (after BDT)

11 candidate events pass all cuts! ($6.1^{+1.1}_{-0.8}$ expected)

3 with unexpectedly high energies → all in T5Z3 w/ altered E-field

95% confidence contours for expected signal from 5, 7, 10 & 15 GeV/c² DM

LT-analysis post-unblinding comparison

Overall, 11 candidate events are consistent w/ background expectation & most individual detectors agree w/ model

Altered electric field on T5Z3 may have affected background-model performance → further investigation in progress

Background model agrees well with events observed in preselection region \rightarrow p-values = 8-26% for 4 DM masses

Ray Bunker - Syracuse University

LT-analysis result

95% C.L. uncertainty band (trigger, energy scale, fiducial volume)

Next generation → SuperCDMS SNOLAB

Larger target mass:

More & larger iZIPs Cryostat large enough for 400 kg Si & Ge crystals 1 tower in CDMSlite configuration → also with Si & Ge

Lower background:

New facility at deeper site Cleaner materials selection Active neutron veto

Improved signal readout:

Phonons \rightarrow new SQUID arrays Ionization \rightarrow switch to HEMTs Improved tower design

Improved resolution:

 $\sigma_{phonon} \propto T_c^3 \rightarrow$ lower operating temp 42 eV demonstrated (>4x better) Improved cryogenics could give >100x improvement!

SuperCDMS Soudan

2 ionization + 2 ionization 4 phonon + 4 phonon

5 towers of 3 iZIPs each

SuperCDMS SNOLAB

3.3 cm thick 4"diameter 1.4 kg Ge / 615 g Si

2 ionization + 2 ionization 6 phonon + 6 phonon

⁷ towers of 6 iZIPs each

Beyond SuperCDMS Soudan

Background Reduction

- Step 1 → Bulk gamma background via cleaner copper ... 220x lower → Based on levels achieved by DEAP/CLEAN and XENON100
- Step 2 → Rn-sourced backgrounds, primarily at high radius → copper housings ... 22x lower via cleaner handling & storage

Further improvement \rightarrow

- Superior resolution via lower Tc's
- Fiducialization
- Lower energy thresholds

Dependent on detector mode!

SuperCDMS SNOLAB expected sensitivity

Ray Bunker - Syracuse University

SuperCDMS SNOLAB expected sensitivity

Beyond SuperCDMS Soudan

Plans for Radon Exclusion

Protect detector and nearby copper surfaces from exposure to Rn!

- Use standard etching techniques to clean copper surfaces
- Radiopurity of Ge & Si substrates already sufficient for SNOLAB sensitivity
- Improved procedures to limit exposure during payload assembly

Radon-mitigated clean room underground at SNOLAB
 → To prevent contamination during detector installation

Looking toward the future and G3:

• More robust protection while in storage

→ Use radon emanation measurements to study storage cabinets & purge packaging

→ Commission & operate Rn-emanation system

Development of BetaCage detector

 \rightarrow More sensitive screening of α - & β -emitting surface contaminants (*i.e.*, Rn daughters)

Radon Mitigation Systems

Continuous flow:

- Most Rn decays before exiting carbon
- $C_{\text{final}} = C_{\text{initial}} \exp[-t/t_{\text{Rn}}]$ $\rightarrow Assuming ideal column Rn lifetime$
- Relatively simple & robust
- Need to cool carbon to be effective → Ateko commercial system effective for NEMO

Swing flow:

- Stop gas flow well before breakthrough
 - Use at least 2 columns:
 - → Regenerate column #1
 → Flow through column #2
- C_{final} = 0
 → Assuming ideal column
- More complicated
- Vacuum-swing:
 → Potentially better performance than continuous system a lower cost
 →A. Pocar, LRT2004 (Borexino)
- Temperature-swing:
 - → Expect best performance at highest cost → A. Hallin, LRT2010

Radon Mitigation Systems

(Average air flow	Reduction factor	Budgetary price (EUR)
Continuous system commercially available from Ateko	300 m³/h	1000	365 000,-
	220 m³/h	1000	280 000,-
	150 m³/h	1000	230 000,-
	120 m³/h	1000	215 000,-
	20 m³/h	1000	68 000,-
Syracuse	90 m³/h	>50	40 000,-
0			

A Hardware only

Vacuum-Swing Absorption (VSA)

- Takes advantage of greater adsorption capacity at high pressures:
 - Regenerate carbon by flowing small fraction f of gas mass flow F back through tank at low purge pressure
 - Volume purge flow ϕ_{purge}

$$\phi_{purge} = \frac{P_{atm}}{P_{purge}} f \cdot F = \frac{f \cdot P_{atm}}{P_{purge}} \phi_{feed}$$

Push back radon front if:

$$G \equiv \frac{\phi_{purge}}{\phi_{feed}} = \frac{f \cdot P_{atm}}{P_{purge}} > 1$$

• Syracuse system, $f \approx 10\%$ with $P_{purge} \approx 2.5$ Torr $\rightarrow G \approx 30$ (ideally)

Activated-Carbon Columns

Calgon Coconut Activated Carbon Product OVC Plus 4x8 (mesh) Multiply rinsed, then dried under high-flow fume hoods

Two Identical Stainless-steel Vacuum Vessels Filled with ~150 kg each & Spring Loaded

Opened up tank after first month commissioning, found carbon still in good shape & well packed.

The VSA Radon Filter

The VSA Radon Filter

Initial Performance at Filter Output

Optimizations in 2013-2014

Increased robustness of system:

• Overcame difficulty of roughing pump to handle high humidity of upstate NY in summer

Identified & reduced leaks all along system:

• Still limited by leaks in clean-room HVAC when HVAC circulation is on

The BetaCage Concept

- Goal is for 100x more sensitive surface $\boldsymbol{\beta}$ screening
- Radiopure time projection chamber
- Wires provide minimum surface area for emissions
- Crossed grids $\rightarrow \approx mm xy$ position information

- Can screen for ²¹⁰Pb β's promptly, without waiting for ²¹⁰Po grow-in
- Sensitivity goals are: (Bunker LRT2013) $\rightarrow 0.1 \beta / \text{keV/m}^2/\text{day}$ $\rightarrow 0.1 \alpha / \text{m}^2/\text{day}$
- \bullet Smaller-sized prototype should have essentially zero background for $\alpha 's$

The BetaCage Prototype

2 40x40-cm² MWPCs around 20-cm field-cage
 → Trigger MWPC & imaging "bulk" MWPC

- Characterized with ⁵⁵Fe X-rays
 - → Achieved intrinsic resolution of ≈14% vs ideal
 12-13% from Fano & avalanche statistics
 →JINST 9 (2014) P01009
- Stability to voltage & pressure variations consistent with Diethorn formalism

Conclusions

SuperCDMS Soudan

CDMSlite demonstrates utility of Luke-amplified phonons for low-mass DM

- \rightarrow PRL 112 (2014) 041302 with 170 eVee threshold
- → Better measure of backgrounds with 2nd run

577 kg-day low-threshold analysis sets 90% C.L. limit of 1.2×10^{-42} at 8 GeV/ c^2

- → Rules out DM interpretation of CoGeNT excess, also for standard-halo spin-independent interpretations of CDMS II Si, DAMA/LIBRA & CRESST
- → Rules out new parameter space for masses < 6 GeV/ c^2 ; PRL 112 (2014) 241302

SuperCDMS SNOLAB

Lower backgrounds, improved resolution, lower energy thresholds:

 \rightarrow unique discovery potential for WIMP masses 1–10 GeV/ c^2

CDMSlite tower with high-gain, low-noise operation:

 \rightarrow extremely low thresholds for world leading light-WIMP sensitivity from 0.3–5 GeV/ c^2 Radon exclusion critical to achieve background goals:

→ VSA technique is viable alternative to more expensive continuous-flow filter

Backup slides

2) Asymmetric Dark Matter

- Kaplan et al
 - 0901.4117
 - Rooted in Technicolor
- Relic Density Determined by Asymmetry Magnitude (NOT Freeze Out)
- No Power Injection at low Z-> No distortion of CMB
- "ADM Miracle"

$$- \Omega_{DM} \sim 5 \Omega_{B} \rightarrow M_{DM} \sim 5 M_{B}$$

 $- M_{DM} \sim 5 GeV$

Courtesy M. Pyle

SuperCDMS iZIP

Detector upgrade to CDMS II

2.5x thicker \rightarrow 600 gram Ge crystals with interleaved phonon & ionization sensors

Doubled channel count:

Ionization Sensors (on both sides)

Inner & Outer-guard electrodes Radial partitioning: Outer / (Inner + Outer) z-direction partitioning: (S1 - S2) / (S1 + S2)3D fiducialization with ionization signals alone Near-perfect rejection of surface events for >8 keVr

Phonons Sensors (on both sides)

3 Inner channels + Outer-guard channel Radial partitioning: Outer/(Outer + Σ Inner) z-direction partitioning: (S1 – S2)/(S1 + S2) Better signal to noise for lowest-energy triggers → Extend 3D fiducialization to low energy!

Searching for low-mass dark matter

Experiments with lighter targets and lower thresholds have the advantage when looking for dark-matter (DM) particles with mass < $10 \text{ GeV}/c^2$

LT-analysis energy scale

Ionization for nuclear recoils measured from ²⁵²Cf data

Total phonon energy = $E_{total} = E_{Luke} + E_{recoil}$ E_{total} is measured with phonons NR equivalent energy = $E_{total} - E_{Luke,NR}$ $E_{Luke,NR}$ estimated from mean NR ionization, varies with E_{total} (same as CDMS II low-energy analysis)

Note: we sometimes approximate mean ionization with Lindhard theory because measured values are detector-dependent. This is labeled "Lindhard nuclear recoil energy"; difference is a few %.

CDMSlite Run 1 raw spectrum

LT-analysis pulse simulation

Backgrounds at low energy are more difficult to separate from signal region due to poor signal to noise

Study directly with a pulse simulation, using high energy events in sidebands and calibration data

weight events as a function of energy to match low energy spectrum

LT-analysis backgrounds

²¹⁰Pb-sourced templates:

From WIMP-search sidebands Sidewalls → high radius, **mid** & **low** yield Faces → inner radius, asymmetric, **mid** & **low** yield Dominant systematic uncertainty:

 \rightarrow yield naively extrapolated to low energy Normalized to ²⁰⁶Pb rates at higher energy

 \rightarrow checked with $^{\rm 210}{\rm Po}\,\alpha$ rates

→ difference assigned as systematic uncertainty

External-gamma templates:

From $\approx 100 \text{ keV}_{ee}$ ¹³³Ba calibration events Randomly chosen from WIMP-search period Normalized to WIMP-search sideband:

 \rightarrow 2.6–5.1 keV_{ee} bulk ER rate

Internal activation-line templates:

From WIMP-search sideband K-shell e⁻ captures at ≈10.4 keV_{ee}

→ same distribution in crystal as L-shell captures Normalize using K-shell rate in sidebands & ratio of L- to K-shell captures in post-Cf open dataset

LT-analysis by-detector efficiencies

LT-analysis fiducial-volume correction

LT-analysis candidate summary

	Candidate	Expected	
Detector	energies $[keV_{nr}]$	background	
T1Z1	—	$0.03\substack{+0.01 \\ -0.01}$	
T2Z1	1.7, 1.8	$1.4\substack{+0.2\\-0.2}$	
T2Z2	1.9 2.7	$1.8\substack{+0.4\\-0.3}$	
T4Z2	_	$0.04\substack{+0.02\\-0.02}$	
T4Z3		$1.7\substack{+0.4\\-0.3}$	
T5Z2	5.8, 1.9, 3.0, 2.3	$1.1\substack{+0.3\\-0.3}$	
T5Z3	7.8, 9.4, 7.0	$0.13\substack{+0.06 \\ -0.04}$	

LT-analysis lowest-energy candidate

LT-analysis background-model uncertainty

LT-analysis BDT inputs vs. data

LT-analysis BDT vs. WIMP mass

LT-analysis BDT scoring of data

LT-analysis BDT scoring of signal

LT-analysis tower-5 BDTs

Generally good agreement with background model

Low-rate BDT tails in data no well-represented by model

LT-analysis exclusion limit (w/o T5Z3)

LT-analysis limit: alternate energy scales

LT-analysis exclusion limits

SuperCDMS Soudan full exposure

Near-zero background WIMP-search

Different strategy:

- → higher thresholds
- \rightarrow larger exposure (\approx 3000 kg-days)
- → background from low-rate tails of of surface-event distributions
- \rightarrow expect larger fiducial volume

Analysis effort ongoing!

Use full detector array

Ray Bunker - Syracuse University

SuperCDMS SNOLAB shielding

Assumed bulk contaminant levels no lower than measured by other experiments for easily available radiopure materials

SuperCDMS SNOLAB reach with theory

VSA Cost Breakdown

• Based closely on Princeton design for Borexino (described well in Pocar thesis, and thanks to T. Shutt, A. Hallin, A. Pocar for discussions)

item	2002 Princeton	$\cos t (US\$)$	- SU cost (10 years later)	SDSMT added cost (now)
tanks		8k	9k	19k
charcoal $(0.5 t)$ (0).3 t) (0.8 t)	6k	1.5k	3.3k
vacuum pumps		22k	10k	10k
valves		$4\mathrm{k}$	7k	
dryer		3.5k	7.5k	
blower		1.5k	(none)	0.7k
HEPA filter $+$ housing		1.5k	1k	0.4k
computer and values	ve control boards	1.5k	6k including gauges	
other (fittings, tub	oing,)	5k	5k + 8k chiller	3k (later)
total		53k	55k	+ 36k
			no radon source	\$8k pylon radon source

VSA Comparison: Princeton vs Syracuse

Takes 5 minutes to pump down to ≈10 torr (vs Princeton ≈1 min)

 \rightarrow So part of cycle is inefficient

VSA Comparison: Princeton vs Syracuse

Want large G, big output flow and short cycle times:

Must have G > 1 for system to mitigate at all Note this is not a valid direct comparison

 \rightarrow same G in different systems can be different performance

The Syracuse Clean Room

- Designed for 30 cfm low-Rn makup up (0.04" w.g. in overpressure)
- 8 ft x 12 ft x 8 ft high
 - With 4' x 8' anteroom
 - As small as would be practical
- All aluminum panels/extrusions
 - Thick polycarbonate windows
 - Minimize emanation/permeation
 - Very leak tight, eventually (0.25" w.g.)
- HVAC box for re-circulation outside
 - Extensive efforts to make leak tight
- Aged water for humidification
- Fast HEPA filtration: 1 air exchange per 30 s

The Syracuse Clean Room

Air Sampling of Clean Room

Use high-volume air sampling system with Whatman GF/F glass-fiber filters, transfer to Ortec alpha counter to count ²¹⁸Po, ²¹⁴Po decays and infer airborn concentrations of ²¹⁸Po, ²¹⁴Bi, ²¹⁴Pb

→Indicates clean room ≈10x lower radon daughter concentrations than outside lab prior to radon mitigation

HI-Q Environmental Products CF-901 ~70 lpm sampling rate

Electrostatic Detector Background

Initial rate from fill 100x too large for LN₂ boil-off

 \rightarrow 300x lower than our room air

Decayed as expected if no source from chamber leaks or emanation

Reduced by factor 4 as expected when lowered pressure from 1000 to 230 Torr:

> → No evidence of chamber leaks/emanation with better sensitivity

60 Po-218 rate Po-214 rate verage Po-peak rate 50 Best-fit half-life = 3.73 ± 0.71 d 40 Counts/day 30 20 10 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 0 2040 60 80 100 120 n 140 Time since introduction of sample [hours]

Run 65 - Boil-off N2 Background Measurement

Expected BetaCage Photon Background

mBq/kg	²³⁸ U	²³² Th	⁴⁰ К
Resistors ^a	6,000	5,000	35,000
Noryl ^b	<3	<1	5
Lead ^C	3,000 ²¹⁰ Pb		
Acrylic ^a	<0.12	<0.04	<1.5
Copper ^d	0.08	0.12	0.04
Stainless Steel ^{a,e}	<1	<10	<4

[a] Community Material Assay Database, radiopurity.org

- [b] U/Th \rightarrow UMN Gopher HPGe & Caltech ICP-MS; K \rightarrow UC Davis NAA
- [c] PLOMBUM low-activity lead, www.plombum.republika.pl
- [d] E. Aprile et al., Phys. Rev. D83 (2011) 082001
- [e] SS feedthrough contributes negligibly to beta background

Full background simulation using measured or limited radiopurity of components indicates should be dominated by gammas from Pb shielding:

→ Most challenging component was plastic for wire frames

Expected BetaCage Radon Background

Some radon induced events rejected by requiring energy in trigger and bulk but not edge regions:

- But expected background would still dominate w/o mitigation
- 100x improvement sufficient to make subdominant & achievable w/ 30 lpm flow rate through cooled carbon trap
- Keep wire surfaces clean via stringing in Rn-mitigated clean room

Mature Design for Gas Handling System

Fully Strung MWPC Frame

MWPC comprised of 2 cathode layers and a crossed anode layer: 5 mm pitch, 5 mm plane spacing

MWPC frame assembly occurred in a class 1000 clean room

Wires were strung using a custom stringing jig

... roughly 6 minutes per wire.

Spring-loaded feedthroughs

Prototype Setup for X-ray Characterization

Prototype ⁵⁵Fe Spectrum

Typical pulse through Cremat amp With ⁵⁵Fe x-ray source.

Gain ~10⁴ with P10 at STP Anode 2100 V, Cathode 100 V Data collected from 55Fe source x-rays Collimated into the central 3-wire channel.

Read into a charge integrating amp and a Slow digitizer.

Nearly ideal intrinsic energy resoluiton!

