Nuclear Astrophysics at TRIUMF with the TUDA facility

Outline

- Experimental nuclear astrophysics
- Overview of the TUDA facility
- Indirect measurements
- Direct measurements
- Future programme

Exploding Stars: Novae, Supernovae, X-ray bursters

- Cataclysmic stellar events in binary systems
- Accretion of hydrogen-rich material, onto compact object, initiating thermonuclear runaway
- High temperatures up to few 10⁹ K
- Nuclear reactions (p,γ) , (p,α) , (α,p) , (α,γ) supersede β -decays
- > Radioactive nuclei play critical role
- Radioactive beams vital to study these scenarios

Novae and X-ray Bursters

- White dwarf
- Temperature: up to 3 x 10⁸K
- Time: 100-1000s to eject layer

- Neutron star
- Temperature: up to 2 x 10⁹K
- Time: 1-10s to eject layer

X-ray burster in NGC 6624: HST

Supernovae Type 1a

- White dwarf
- Accreted material builds up until Chandrasekhar mass limit reached
- Electron degeneracy pressure no longer supports star
- Carbon ignited explosively in the core
- Resulting explosion destroys star
- Used as standard candles

SN1999BE: CGCG 089-013
One week after outburst

Explosive hydrogen burning

- CNO cycle dominates above 2 x 10⁷K
- Above 10^8 K, 13 N(p, γ) 14 O supersedes β -decay of 13 N
- Above 4 x 10^8 K, 14 O(α ,p) 17 F supersedes β -decay of 14 O
- Build up of material in ¹⁵O and ¹⁸Ne
- Breakout reactions $^{15}\text{O}(\alpha,\gamma)^{19}\text{Ne}$ and $^{18}\text{Ne}(\alpha,p)^{21}\text{Na}$ control subsequent energy generation

Experimental Nuclear Astrophysics What can we measure in the lab?

Want to measure nuclear reaction rates

Can do this directly by measuring

- Cross sections
- Resonance strengths

or if yields too low, indirectly by measuring

- Energies
- Spins and parities
- Widths
- Partial widths,
 branching ratios

Radioactive Ion Beams ISAC @ TRIUMF

- Isotope separation on line technique - ISOL
- Worlds largest cyclotron –
 500 MeV protons
- After target, second acceleration stage – RFQ and DTL
- Beam energies between 0.15 and 1.5 MeV/u
- Isotopes up to mass 30
- Ion sources:
 - Surface
 - Laser
 - Febiad (this summer)

Nuclear Astrophysics at ISAC: the TUDA and DRAGON facilities

DRAGON

TUDA

TUDA:

the TRIUMF UK Detector Array

- Studying charged particle reactions,
 e.g (p,p'), (α,p), (d,p)
- Large area, high multiplicity silicon strip arrays – LEDA and CD
- Solid/gas targets
- Up to 512 channels of RAL/Edinburgh instrumentation
- Isolated chamber and electronics to reduce noise
- VME DAQ

TUDA: the TRIUMF UK Detector Array

TUDA's 'Copper Shack'

TUDA Layout

- 4-vane beam monitor
- Anti-scatter collimator
- Preamplifier assembly
- Upstream detector/s

- Downstream detector/s
- Preamplifier assembly
- 4-vane beam monitor
- Beam dump FC

Detectors: LEDA Louvain Edinburgh Detector Array

 Large area, highly segmented silicon strip array

Can be used in various configurations to cover the required angular range

TUDA Targets

- Solid targets
 - $-CH_2$
 - $-CD_2$
 - Gold foils
 - Carbon foils
- Gas target
 - Helium filled cell
 - Cryogenic ³He cell (on loan from E. Rehm/ANL)

Indirect measurements

Novae observables – ²²Na

- Decay of ²²Na results in characteristic gamma line
- Observation of such gammas would put constraints on nova models (no observation to date!)
- Largest uncertainty in abundance due to 21 Na(p, γ) 22 Mg rate

One of the aims of INTEGRAL is the detection of 1.275MeV γ -ray

Indirect measurements with TUDA $^{21}Na(p,p)^{21}Na$

- Studied states in ²²Mg via resonant elastic scattering
- ²¹Na beam impinging on CH₂ target
- Proton energy spectrum exhibits resonant features
- R-matrix analysis of proton data provides information on energies and spins of states populated in ²²Mg

Courtesy of Chris Ruiz (University of Edinburgh/TRIUMF) C. Ruiz et al., PRC 71 (2005) 025802

Indirect measurements with TUDA $^{20}Na(p,p)^{20}Na$

- Studied states in ²¹Mg via resonant elastic scattering
- ²⁰Na beam impinging on CH₂ target

Figures courtesy of A. Murphy (U. of Edin.) A. St. J. Murphy et al., accepted by PRC

Indirect $^{15}O(\alpha, \gamma)^{19}$ Ne with TUDA: $d(^{18}Ne, p)^{19}Ne^*(\alpha)^{15}O$

- HCNO breakout reaction
- Reaction rate dominated by resonances
- Populate excited states in ¹⁹Ne by neutron transfer
- Proton tags excited state and coincident α and ¹⁵O identify decay
- Measure α-branching ratios to determine reaction rate

Previous results and improvements

- First measurement undertaken at CRC in Belgium
- States in ¹⁹Ne populated and α-decays seen from higher lying states
- No decay from astrophysically important state at 4.033MeV seen
- New measurement planned for ISAC II
- Higher beam intensity by factor of 1000 and longer running time
- Improved detector setup

¹⁹Ne excitation energy spectrum from first measurement

A.M. Laird et al., Phys. Rev C 66 (2002) 048801

Direct measurements

Direct measurement with TUDA $^{18}Ne(\alpha,p)^{21}Na$

- Breakout from HCNO cycle
- Reaction rate dominated by resonances in compound system
- Reaction protons detected in LEDA
 - Use time of flight to identify protons
 - Yield and cross section for each resonance
 - Reaction rate for each resonance

¹⁰B test measurement Preliminary results (Aug. 2005)

Gas Cell at 300 mbar

Background results

¹⁰B 12.3MeV Gas Cell 'empty'

¹²C+¹²C fusion at astrophysical energies

- Extremely important for understanding both quiescent carbon burning in >7 M_☉ stars and explosive carbon burning in type 1a supernovae
- At relevant energies, 1-3 MeV in the centre of mass, reaction is dominated by p and α exit channels
- Most recent measurements (1981) reach down to 2.45 MeV
- However, discrepancies exist in data even at higher energies
- Resonant features make extrapolations to lower energies difficult to do with confidence

Experimental set up for ¹²C+¹²C

Aim is to measure:

- > angular distributions and
- > excitation functions for alpha and proton channels

in the region between $E_{cm} = 3.0$ - 4.0 MeV ($\Delta E_{cm} = 100 \text{ keV}$)

- > particle discrimination via TOF and DE/E
- > energy and angle measurement with strip detector arrays
- ➤ absolute cross-section ⇔ normalisation to Mott scattering data

First measurement July 2005 – analysis ongoing

Experimental Challenges

- > Cross section drops off rapidly with energy
 - > low statistics
 - > require excellent beam energy determination
 - > large solid angle coverage
 - > energy determination with DRAGON
- > Proton contamination on target (from water and hydrocarbons)
 - > background from elastically scattered protons
 - \triangleright additional background from $D(^{12}C,^{13}C)$ p reaction
 - > target heating
 - > (particle ID)
- > Carbon build-up during runs (from hydrocarbons)
 - > affects target thickness and effective interaction energy
 - > target thickness measurements
 - > tests to determine significance

First measurement July 2005 – analysis ongoing

Approved measurements at TUDA

- 18 Ne(α ,p) 21 Na
- ¹⁸Ne(d,p)¹⁹Ne
- ^{17,18}Ne(³He,p)^{19,20}Na
- $^{14}O(\alpha,p)^{17}F$
- ¹⁵O(⁶Li,d)¹⁹Ne
- ${}^{18}F(p,\alpha){}^{15}O$
- ¹²C+¹²C

The future....ISAC II

- Expansion to higher energies and wider range of beams
 - *− Up to 6.5 MeV/u*
 - Masses up to 150
- New experimental facilities
 - EMMA (ElectroMagnetic Mass Analyser)
 - TIGRESS (gamma spectrometer)
 - TUDA
 - combinations of above

ISAC II

- Extension to ISAC
- Initial stage (2006) energies up to 4.3 MeV/u and masses up to 60
- Second stage, energies up to 6.5 MeV/u

Experimental Nuclear Astrophysics at low energies

- Studying directly key nuclear reactions for nucleosynthesis and energy generation in explosive sites novae, supernovae and X-ray bursters
- Experimental conditions
 - \triangleright Beam energies: about 0.1 2 MeV/u (up to few 10^9 K)
 - ➤ Charged particle energies of few MeV down to ~ 100 keV
 - ➤ Radioactive beams high background, low intensity
 - > Cross sections can be low < mbarn
- ➤ Need high efficiency, large solid angle detector arrays with low detection threshold

TACTIC

Future research programme (what are we trying to achieve and how)

- Understand explosive binary systems and their influence on the surrounding universe
 - energy generation
 - nucleosynthesis
- Need to understand the nuclear processes that influence energy generation and nucleosynthesis (not necessarily the same reactions)
 - Comprehensive study of key nuclear reactions (directly, indirectly, any way we can!)
 - ➤ Maintain links with theory and models to ensure key reactions are identified

Many thanks to....

The TUDA collaboration (University of Edinburgh, TRIUMF and University of York)

and the

PH-122 collaboration

(Universities of Edinburgh, Louvain-la-Neuve and Catania)

GEANT 4 Simulations

- Currently developing GEANT 4 simulations of prototype cylindrical chamber
 - stopping powers of low energy charged particles not well reproduced

¹¹B end points, 9 MeV ⁸Li beam, 250 mbar 90/10 He/CO₂

Distance along beam axis from start of target region [mm]