

REX operation 2005 and future plans and upgrades

Didier Voulot

Operation and Development in 2005

- Low energy part
- linac

REX Upgrade

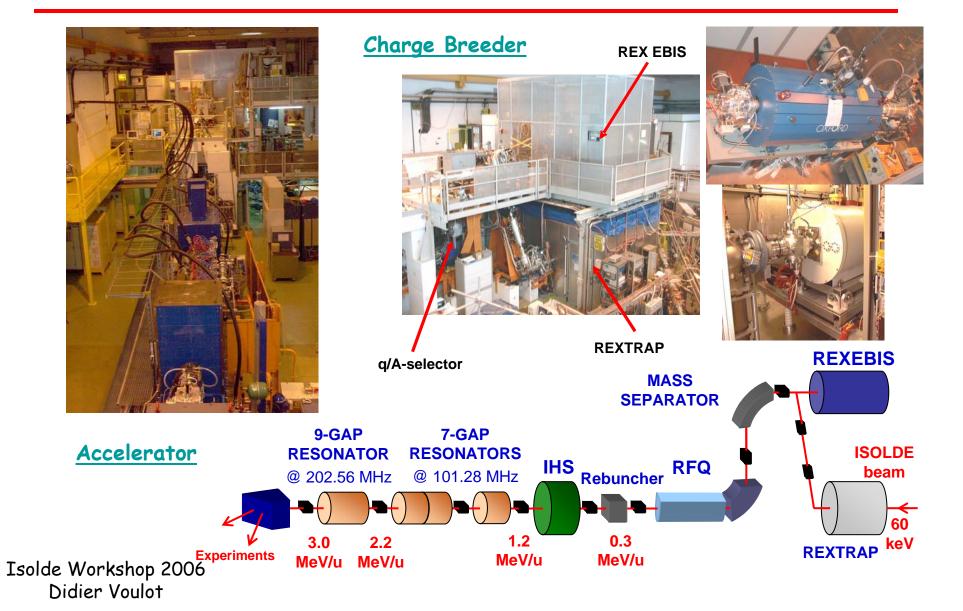
- Minimove
- 5.5MeV/u upgrade
- Towards 10 MeV/u
- A SC linac for REX?

Some Practical News

Operator status Didier Voulot (contact person) Fredrik Wenander (contact person) Richard Scrivens Pierre Delahaye

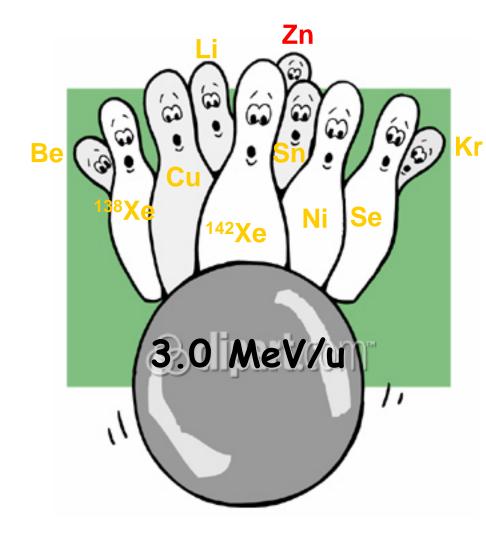
Departed Thomas Sieber Romain Savreux

For the users:

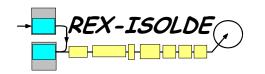

details for each run in the machine, summary found at: <u>www.cern.ch/ISOLDE</u> (click on <u>REX-ISOLDE</u>, bottom first page)

report from weekly meeting, click on <u>Committees & Meetings</u>

REX-Isolde



2005 Highlights


Isolde Workshop 2006 Didier Voulot © 9/10 successful beam times (accelerated beam delivered to the experiment)

 I3 new radioactive isotopes postaccelerated in 2005:
 ^{11,12}Be, ⁶⁸Ni, ^{68,69,70}Cu, ⁷⁰Se, ⁹²Kr,
 ¹⁰⁸In, ¹⁰⁸Sn, ^{138,140,142}Xe

© Regular efficiencies - trap 40-50%, EBIS 5-10%, Linac 85%

Molecular beam, ⁷⁰Se¹⁹⁺, delivered
 to experiment

⊗ Zn run cancelled due to broken RF amplifier

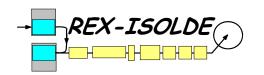
Summary of 2005 -Low Energy Part

Improvements

-High TRAP and EBIS eff, 50% and >5%, respectively

-EBIS -> no interruptions for the complete period of operation

-New Labview based control system for REXTRAP with improved features (R. Savreux)


-REXEBIS solenoid heat leak reduced -> longer LHe holding time

Isolde Workshop 2006 Didier Voulot

Still to improve

- Move REXTRAP roughing pumps enable higher beam intensities from ISOLDE

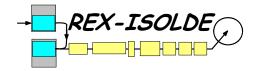
-Slow extraction from EBIS up to 1 ms extracted pulse

Summary of 2005 – Linac Part

Improvements

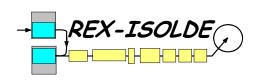
-Machine is getting more stable no interruptions due to power supplies or optics in the last 5 runs

-100MHz RF more reliable (apart from interlocks problems)


-New control system for Linac RF and beam optics (AB support same CS as ISOLDE)

Still to improve

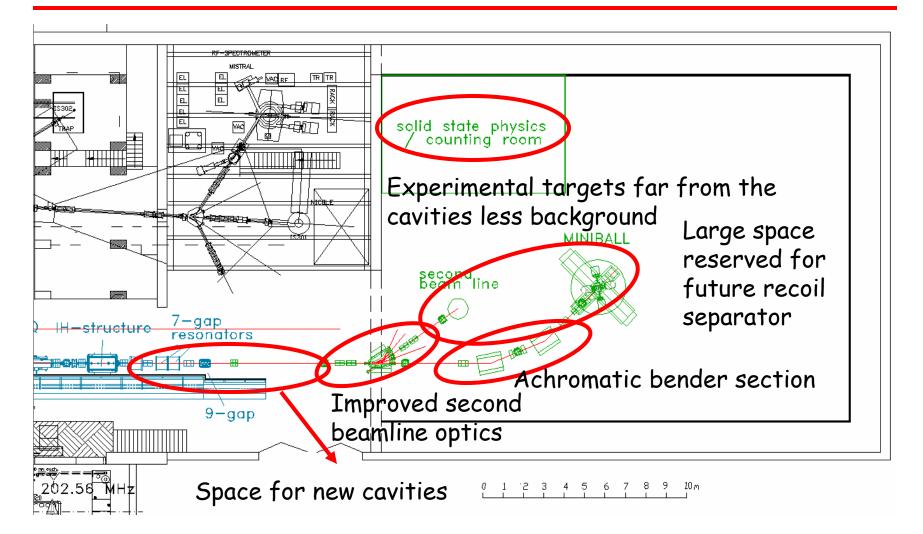
-Repair/consolidate 200MHz RF amplifier

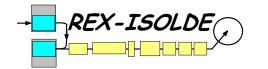

-Improve vacuum control on the experimental beamlines

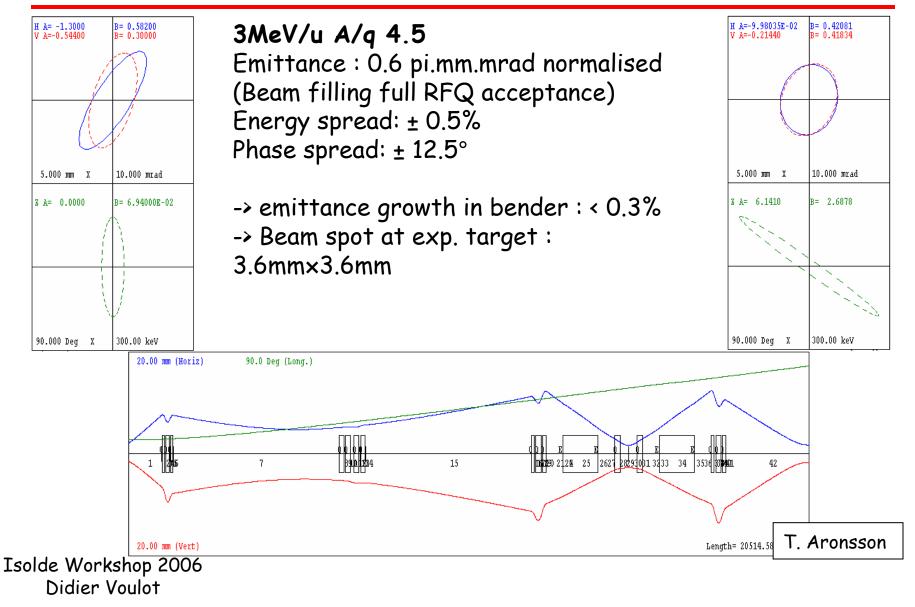
-New control system for beam diagnostics

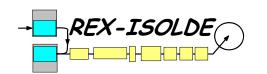
REX upgrade

REX upgrade milestones (IH option)

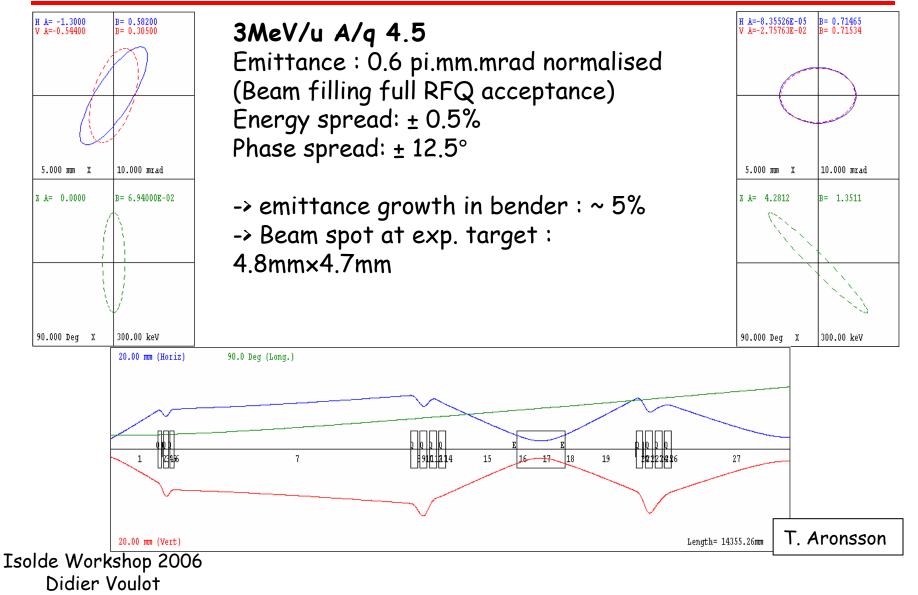



- Mini-move (2006-2007)
 - Move Miniball and the "second beamline" in the new hall
 - Make some space and prepare for the extension of the linac
- 5.5MeV/u upgrade (2006-2009)
 - Beam dynamics at 5.5MeV/u (6 months to 1 year)
 - Design of new cavities (6 months to 1 year)
 - Fabrication (1 year)
 - Tests and commissioning (6 months)
- 10MeV/u upgrade (after 2010)

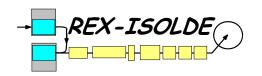


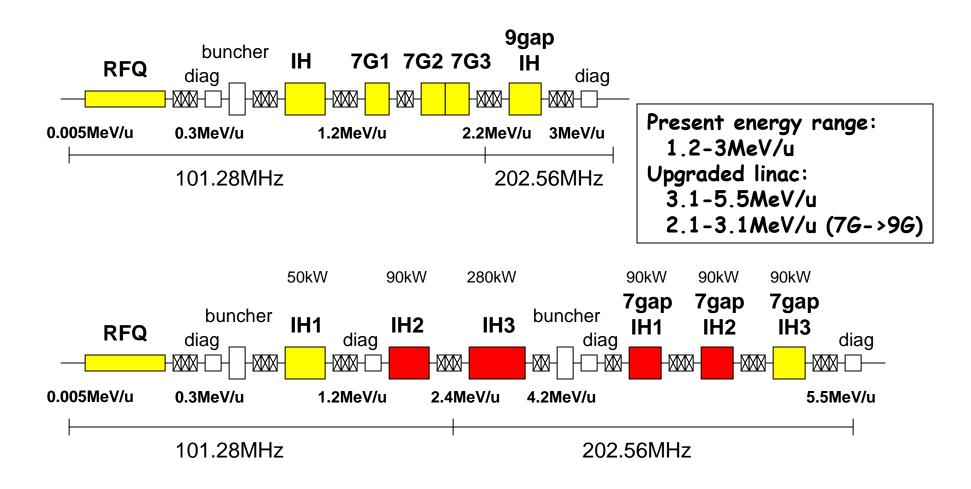


Beam optics Miniball



Beam optics Second beamline

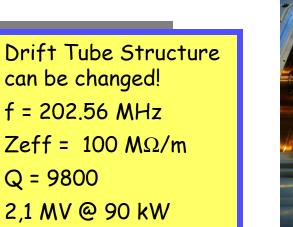


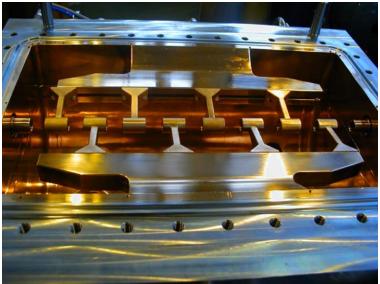


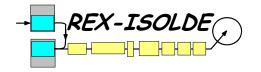
- -> Improved beam spot and emittance for both beamlines
- -> More focusing elements <-> more flexibility
- -> Can transport beams at 5.5MeV/u up to A/q 4.5
- -> Lower energy beams can also be transported (down to 1.2MeV/u)
- -> Dipoles can bend 10MeV/u beams (A/q 4.5)
- -> Use mostly existing equipment and free magnets from GSI

REX upgrade 5.5MeV/u

Short rf-Resonators




REX 7-Gap Spiral Resonator



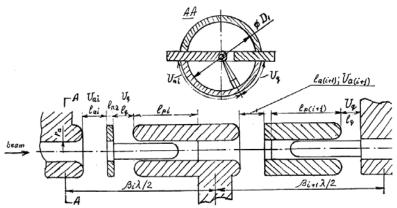
Fixed Structure! f = 101.28 MHz Zeff = 53 MΩ/m Q = 5400 - 5600 1,6 MV @ 90 kW

MAFF/REX short IH Cavity

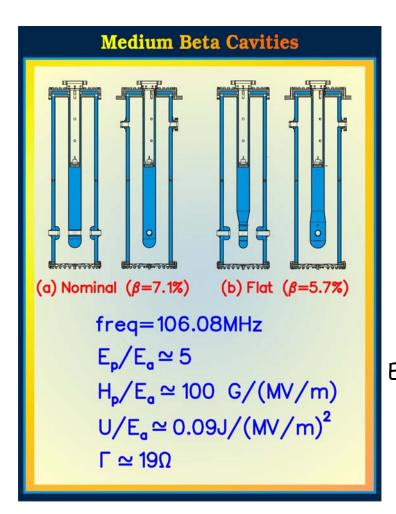
rf - Requirements

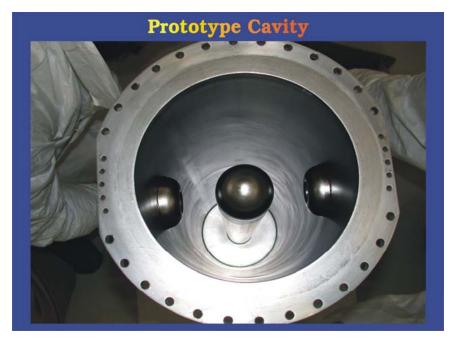
IH Tank No.	Frequency (MHz)	Length (m)	$\eta_{ m eff}$ M Ω/m	P _{rf} (kW)	E. Gain (MeV/u)	V _{eff} (MV)	Amplifier
IH1	101.28	1.5	235	50	0.9	4.1	IH1
IH2	101.28	1.85	190	90	1.1	4.8	SP7G-1
IH3	202.56	165	160	280	1.9	8.6	Linac3
IH7G-1	202.56	0.5	100	90	0.45	2.1	SP7G-2, mod.
IH7G-2	202.56	0.5	100	90	0.45	2.1	SP7G-3, mod.
IH7G-3	202.56	0.5	100	90	0.45	2.1	IH 9 Gap

Price of the LINAC upgrade in k€


Modification of existing RF Systems price of IH-7gap2 IH Zgao 1 IH-7gap3 IH₂ IH3 components rf-Amplifier Low level rf-modules + SIMATIC, crates electronics (vacuum, control, SIMATIC, PCs, ADCs, DACs, Profibus) vacuumsystem (valves, gauges, pumps tuning plungers, structure resonator tank (material and production) cooper plating (tank, structure) support stands magnetic lenses+power supply price of the structures

- 5.5MeV/u with IH + RFQ-DTL
 - 5.5 to 10 MeV/u
 - IHEP Protvino (ISTC)
 - Tentative design ready
 but
 - No energy variation




- Superconducting linac from 5.5 to 10MeV/u
- Superconducting linac all the way from 1.2MeV/u to 10MeV/u!!!

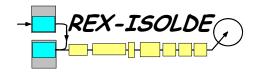
Superconducting linac for heavy ions?

- SC linac = Array of small independent resonating cavities, equipped with their own small power amplifier (<1kW).
- Small cavities -> wide velocity acceptance : large range of A/q ratio can be accelerated very efficiently
- They provide very high field at c.w. operation with little power consumption.

State-of-the-art SC cavities used for radioactive heavy ions accelerators

E_{acc}T= 6MV/m over a length of 18 cm = 1.08 MV @ 7W power dissipation on LHe.

Courtesy of B. Laxdal, TRIUMF


M. Pasini

Some reason to go SC

- Higher flexibility
- Possibility of having large aperture -> very high transmission
- Effective voltage always available, so lighter ions can be accelerated to higher energy
- CW operation possible (ECR charge breeder)
- CERN infrastructure (chemical polishing, clean room, cryogenic plant)
- In the last years, SC linac demonstrated their reliability and all the new planned facilities foresee SC post-accelerators (EURISOL)

"Back of the envelopes calculation"

- Energy upgrade from 1.2 to 10 MeV/u for a A/q=4.5 means an effective voltage of 39.6 MV
- Assuming 1 MV per cavity 40 cavities are needed
- Cryostats 2 meters long can contain 4-5 cavities, (depending on the focusing scheme) so 10 MeV/u can be reached in 20m

Minimove

- 2006 installation of the extended beamlines and preparation work for the linac upgrade (power, cooling, infrastructure)
- Shutdown 2006/2007 move Miniball and second beamline
- 2007 runs at 3MeV/u in the new hall

Linac

->review of linac technolody : 1st May 2006

If IH option :

- Shutdown 2007/2008: Installation of the first cavities of the 5.5Mev/u
- 2008 runs at 4.2MeV/u with cavities that do not need RF modifications
- Shutdown 2008/2009 finish installation of cavities for the 5.5MeV/u linac
- 2009 first runs at 5.5MeV/u

If SC linac all the way : -> a bit more time and money -> but much more possibilities