

Coulomb excitation of ^{68,70,m,g}**Cu with**

REX-ISOLDE and Miniball (IS435)

I. Stefanescu

M. Huyse, O. Ivanov, P. Van Duppen, J. Van de Walle

IKS, KU Leuven

G. Georgiev

CSNSM Orsay, France

Miniball collaboration and REX-ISOLDE collaboration

N=40: neutron-rich Cu isotopes

Irina Stefanescu, Isolde Workshop, 6-8 February 2006

➢ ⁶⁸Ni a good core? → determine the effective proton and neutron charges

➢ odd-A and odd-odd nuclei → nuclear wave function dominated by single-particle configurations

Coulex of ^{67,69,71}Cu: effective proton charges

✓ Coulex of ^{68,70}Cu: effective neutron charges

 $g_{9/2}$

 $\begin{array}{c} p_{1/2} \\ f_{5/2} \end{array}$

p_{3/2}

f_{7/2}

N=40: coulex of ^{68,70}Cu isotopes

T. E. Ward et al., PR88, 1802(1969) L. Hou et al., PRC68, 054306(2003) $\pi p_{3/2} \otimes v g_{9/2}$ (J^{π}=3⁻, 4⁻, 5⁻, 6⁻)

$$\pi \mathbf{p}_{3/2} \otimes \mathbf{v} \mathbf{p}_{1/2} \ (\mathbf{J}^{\pi} = \mathbf{1}^+, \mathbf{2}^+)$$

$$\begin{array}{c} \textbf{(4^{-})}\\ \textbf{1^{+}} & \textbf{T}_{1/2} = \textbf{6.6 s} \\ \textbf{3^{-}} & \textbf{T}_{1/2} = \textbf{33 s} \\ \textbf{6^{-}} & \textbf{T}_{1/2} = \textbf{44.5 s} \end{array}$$

J. Van Roosbroeck et al., PRL92(2004)112501 J. Van Roosbroeck et al., PRC69(034313).

^{68,70,m,g}Cu: production of isomeric beams

Example: 68Cu

U. Koester et al., NIMB167(2000)528 ⁷⁰Cu: J. Van Roosbroeck et al., PRL92(2004)112501

Coulex of 68,70,m,gCu

> Laser ON/OFF runs for determining isobaric contaminants

Irina Stefanescu, Isolde Workshop, 6-8 February 2006

Coulex of ^{68,m}Cu

^{68,m}Cu (2.86 MeV/u) @ ¹²⁰Sn (2.3 mg/cm²)

B(E2; 6⁻ \rightarrow 4⁻) ~ σ (**E2; 6**⁻ \rightarrow 4⁻) ~ σ (**E2; 120Sn)** · 1/r · N_y(68Cu) / N_y(120Sn)

⁶⁸Cu, preliminary : $B(E2; 4^- \rightarrow 6^-) = 88 \pm 7 e^2 fm^4$

Coulex of 68,mCu

^{68,m}Cu (2.86 MeV/u) @ ¹²⁰Sn (2.3 mg/cm²)

Irina Stefanescu, Isolde Workshop, 6-8 February 2006

Coulex of 68,mCu

Coulex of ^{70,g}Cu

^{70,g}Cu (2.86 MeV/u) @ ¹²⁰Sn (2.3 mg/cm²)

Coulex of ^{70,g}Cu

^{70,g}Cu (2.86 MeV/u) @ ¹²⁰Sn (2.3 mg/cm²)

⁷⁰Cu, preliminary : $B(E2; 4^- \rightarrow 6^-) = 105 \pm 11 \ e^2 fm^4$

Coulex of 68,70,m,gCu

EXP.

Shell-model**

5⁻ 740

(5⁻) 628

5 ____ 506

Conclusions and outlook

✓ July 2005: for the first time isomeric beams are post-accelerated by REX-ISOLDE

✓ Coulex of ^{68,70,m,g}Cu was measured with Miniball

$\checkmark \pi p_{3/2} \otimes \vee g_{9/2}$ multiplet : B(E2; 4⁻ \rightarrow 6⁻) measured, energy and spin of the 4⁻ state fixed

✓ preliminary results in good agreement with the shell –model calculations

summer 2006: coulex of ^{67,69,71}**Cu**

→ effective proton and neutron charges around ⁶⁸Ni

The Collaboration

J. Van de Walle¹, I. Stefanescu¹, P. Mayet¹, O. Ivanov¹, R. Raabe¹, M. Huyse¹, P. Van Duppen¹, O. Niedermaier², M. Lauer², V. Bildstein², H. Scheit², D. Schwalm², N. Warr³, D. Weisshaar³, J. Eberth³, M. Pantea⁴, G. Schrieder⁴, O. Kester⁵, F. Ames⁵, T. Sieber⁵, S. Emhofer⁵, B. Wolf⁵, R. Lutter⁵, D. Habs⁵, P. Butler⁶, L. Fraile⁶, J. Cederkäll⁶, P. Delahaye⁶, S. Franchoo⁶, G. Georgiev⁶, Y. Kojima⁶, U. Köster⁶, T. Nilsson⁶, F. Wenander⁶, J. Iwanicki⁷, A. Hurst⁷, C. Barton⁸, Th. Behrens⁹, Th. Kröll⁹, R. Gernhäuser⁹, R. Krücken⁹, D. Balabanski¹⁰, G. Lo Bianco¹⁰, K. Gladnishki¹⁰, A. Saltarelli¹⁰, A. Lagoyannis¹¹ the MINIBALL collaboration and the REX-ISOLDE collaboration ¹ IKS KULeuven, Belgium ² Max Planck Institut für Kernphysik, Heidelberg, Germany ³ Institut fur Kernphysik, Universität zu Köln, Germany ⁴ TU Darmstadt, Germany ⁵ LMU München, Germany ISOLDE ⁶ CERN. Switzerland CERN ⁷ University of Liverpool, Great Britain ⁸ University of York, Great Britain ⁹ TU München, Germany ¹⁰ University of Camerino, Italy ¹¹ NCSR Athens, Greece

REX-ISOLDE

Irina Stefanescu, Isolde Workshop, 6-8 February 2006

>Transfer reactions: energies, half-lives (J.D Sherman, PRL67(1977))

≻ISOLDE, LISOL → laser spectroscopy, beta-decay: spins, energies, magnetic moments, half-lives (J. Van Roosbroeck, PRL92(2004), PRC69(034313)).