Mass measurements with the Pierre Auger Observatory

L. Molina Bueno for the Pierre Auger Collaboration

STARS2015 - 3rd Caribbean Symposium on Cosmology, Gravitation, Nuclear and Astroparticle Physics

Physics at the Pierre Auger Observatory

Pierre Auger Observatory

studying the universe's highest energy particles

Physics at the Pierre Auger Observatory

Spectrum Anisotropies Mass composition Hadronic interactions Photon searches Neutrino searches

Mass composition observables

Fluorescence detector EM Longitudinal profile Duty cicle ~13%

FD/SD observables study different components of the shower

Water Cherenkov Detectors Particle density at ground Duty cicle ~ 100%

Hybrid X_{max} ≡ Depth at which the energy deposit reaches its maximum $SD \\ X^{\mu_{max}} \equiv Depth at which the$ production of muons is maximum

X_{max:} Is sensitive to mass composition?

All mass composition observables based on the same idea

Showers from **heavy nuclei** will develop **higher, faster** and with **less shower to shower fluctuations** than **lighter** showers.

Event selection

PRD 90 1220005 2014

Data from:1/12/2004-31/12/2012

Pre-selection Good data taking conditions

Quality cuts To avoid distortions in X_{max} distributions.

Fiducial cuts Minimize the distortions due to the FOV of the telescopes. Uniform acceptance for all X_{max}.

X_{max} distributions

X_{max} moments

PRD 90 1220005 2014

Resolution better than 20 g/cm² Syst.uncertainty below 15 g/cm²

break line than with a linear fit.

Energy break $lg(E_0 / eV) = 18.27 \pm 0.04(stat.)^{+0.06}_{-0.07}(sys.)$ $D_{10} = 86.4 \pm 5.0(stat.)_{-3.2}^{+3.8}(sys.)g / cm^{2} / decade$ High energy $D_{10} = 26.4 \pm 2.5(stat.)_{-1.9}^{+7.0}(sys.)g / cm^{2} / decade$

Auger/Telescope Array data

Report of Joint Analysis Working Group arXiv 1503.07540

Direct comparison is not possible because different approaches to analysis.

Auger/Telescope Array data

Measured distributions by Auger described in terms of p,N,He and Fe fractions.

These fractions fully simulated and analyzed by TA using the same procedure applied to their data.

$$\Delta X_{\text{max}} = 2.9 \pm 2.7(statistical) \pm 18(syst)g / cm^2$$

\mathbf{X}_{max} interpretation

Hadronic interaction models at those energies are extrapolations of measurements at LHC energies.

Model predictions have to be carefully treated

X_{max} interpretation

Superposition model

$$D_p = \frac{d < X_{\max}^p >}{d \ln E}$$

V(lnA) measures the purity of the sample

\mathbf{X}_{max} interpretation

Different mixes of composition and identical moments

The X_{max} distribution is compared to MC predictions formed varying nuclear fractions.
A binned maximum-likelihood discriminator is used to choose the best fit fractions.

Pr + He + N + Fe

Reasonable agreement with data. EPOS-LHC describes better the data Composition with Pr:Fe and Pr:Fe:N does not reproduce data Pr + He + N + Fe

Sibyll 2.1 -1 0 Fe fraction QGSJET II-4 0.8 0.6 EPOS-LHC -0.4 0.2 0 N fraction 0.8 0.6 0.4 0 1 ٩1 He fraction ¶-0 0.8 0.6 0.4 0 p fraction 0.8 0.6 0.4 0 1 T. ±₽ 1 0.2 0 100 ⊕ **2** Ŷ P Ŧ 本面 -<u>_</u> Tr T Ŧ ō. 10-1 p-value 10-2 10-3 10-4 10¹⁹ 1018 E [eV]

Muon counting

PRD 91 032003 2015

Inclined hybrid events ($62^{\circ} < \theta < 80^{\circ}$ and 4 < E[EeV] < 50) EM component very suppressed at these angles.

SD signals mainly due to muons.

PRD 91 032003 2015

Muon counting

More muons in data than in simulations.

Strong interaction test at energy scales larger than LHC.

MPD distributions

PRD 90 012012 2014

Muons at ground carry information about their production point

2 assumptions about muons:

Produced in the shower axis + Travel following straight lines at c

MPD distributions

PRD 90 012012 2014

(X^{max}) [g/cm² proton 198 -42 27 500 450 iron Epos-LHC QGSJetll-04 400 10²⁰ 2×10¹⁹ 3×10¹⁹ E [eV]

Resolution between 100-50 g/cm² due to low number of muons contributing to each MPD distribution. Systematic uncertainty 17 g/cm².

MPD distributions

It can be used to constrain hadronic interaction models.

Summary

<X_{max}> elongation rate shows a change in the slope. If we trust hadronic interaction models it suggests a transition from light to heavy composition.

X_{max} measured by TA is consistent with that found using Auger mass distributions.

Muon measurements (number of muons and depth production at maximum) are inconsistent with hadronic interaction model predictions.