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QCD Phase Diagram: Sketch 

In heavy ion collisions heated and compressed nuclear 
matter is produced under controlled conditions 
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QCD Phase Diagram 

•  Except for µΒ!0, many features are unknown 
•  Order of PT, critical points, dof (Quarkyonic matter?) 
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QCD 

M. Stephanov PoS 2006 

L. Bravina, M.B., et al., JPG 1999 
I. Arsene et al., PRC 2007 
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Time Evolution of Heavy Ion Collisions 
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1x 10-23 s  10 x 10-23 s  30 x 10-23 s  

Hybrid approaches are very successful for the 
description of the dynamics 

Nuclei at 99 %  
speed of light 

Quark Gluon Plasma Measurable Fragments 
in the detector 

Hadronic 
Rescattering 

Nonequilibrium 
initial state 
dynamics 

Relativistic 
Hydrodynamics Hadron Transport 

Hannah Petersen, special issue JPG, arXiv:1404.1763 
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History of Hybrid Approaches 

•  Integrated (open source) UrQMD 3.3 
H. Petersen, J. Steinheimer, M. Bleicher, Phys. Rev. C 78:044901, 2008 

•  Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion 
collisions. 
T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, 
Phys.Lett.B636:299-304,2006 

•  3-D hydro + cascade model at RHIC. 
C. Nonaka, S.A. Bass, Nucl.Phys.A774:873-876,2006 

•  Results On Transverse Mass Spectra Obtained With Nexspherio 
F. Grassi, T. Kodama, Y. Hama, J.Phys.G31:S1041-S1044,2005 

•  EPOS+Hydro+UrQMD at LHC 
K. Werner, M. Bleicher, T. Pierog, Phys. Rev. C (2010) 

•  MUSIC@RHIC and LHC 
B. Schenke, S. Jeon, C. Gale, ... (2008) 

•  Started with S. Bass, A. Dumitru, M. Bleicher, Phys.Rev.C60:021902,1999 
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UrQMD hybrid 
•  Initial State:  

–  Initialization of two nuclei 
–  Non-equilibrium hadron-string dynamics 
–  Initial state fluctuations are included naturally 

• 3+1d Hydro +EoS: 
–  SHASTA ideal relativistic fluid dynamics 
–  Net baryon density is explicitly propagated 
–  Equation of state at finit µB 

• Final State:  
–  Hypersurface at constant energy density 
–  Hadronic rescattering and resonance decays 

within UrQMD 

H.Petersen, et al, PRC78 (2008) 044901 
P. Huovinen, H. P. EPJ A48 (2012) 171 
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Initial State 

•  Contracted nuclei have passed 
through each other 

 
 

–  Energy is deposited 
–  Baryon currents have 

separated  
•  Energy-, momentum- and baryon 

number densities are mapped 
onto the hydro grid 

•  Event-by-event fluctuations are 
taken into account 

•  Spectators are propagated 
separately in the cascade  
(J.Steinheimer et al., PRC 77,034901,2008) 

(nucl-th/0607018, nucl-th/0511021)  

Elab=40 AGeV 
b=0 fm 
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Equations of State 

Ideal relativistic one fluid dynamics:   
     and 

–  HG: Hadron gas including the same degrees of freedom as in UrQMD 
(all hadrons with masses up to 2.2 GeV) 

–  CH: Chiral EoS from quark-meson model with first order transition 
and critical endpoint 

–  BM: Bag Model EoS with a strong first order phase transition 
between QGP and hadronic phase 

 
D. Rischke et al.,  
NPA 595, 346, 1995, 

D. Zschiesche et al.,  
PLB 547, 7, 2002 

Papazoglou et al.,  
PRC 59, 411, 1999 

J. Steinheimer, et al.,  
J. Phys. G38 (2011) 
035001 

 



Hadronization, Particlization, Decoupling 

Experiments observe finite number of hadrons in detectors 
Hadronization controlled by the equation of state 
Sampling of particles according to Cooper-Frye equation: 
-Respect conservation laws, maybe even locally? 
-Introduces fluctuations on its own 

Sophisticated 3D hypersurface finder to resolve interesting structures in event-by-event simulations 

Petersen, Huovinen, arXiv:1206.3371  
 Marcus Bleicher, STARS 2015 

! Yields 4-momenta, 4-positions 
of hadrons on the hypersurface 

! Final propagation 
Relativistic Boltzmann equation 

( ) collIfp =∂µ
µ
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Final State Interactions (after Hydro) 



Hybrid model at LHC 

•  PbPb, 2.76 TeV 
•  Excellent description of centrality dependence, 
•  Transverse momenta, 
•  Elliptic flow. 
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happens on a constant proper time hypersurface, where
the Cooper-Frye equation is applied on transverse slices
of thickness ∆z = 0.1−0.2 fm that have cooled down be-
low an energy density of 5ϵ0 ≈ 730 MeV/fm3 [36]. This
approach provides the full final phase space distributions
of the produced particles for each event and can be com-
pared to the pure transport approach by turning off the
hydrodynamic evolution which allows for a qualitative
study of viscous effects.
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FIG. 1: (Color online) Charged particle multiplicity at midra-
pidity (|η| < 0.5) as a function of the number of participants
in Pb+Pb collisions at

√
sNN = 2.76 TeV calculated in the

UrQMD transport and the hybrid approach compared to the
experimental data [1].

The first observable to look at is the charged particle
multiplicity at midrapidity. In Fig. 1 the calculation of
the centrality dependent multiplicity scaled by the num-
ber of participants (estimated in a Glauber approach) is
shown. The hadronic transport approach UrQMD pro-
vides a reasonable description of the multiplicity. For
central collisions the predictions published in [37] are
right on top of the ALICE data while with decreasing
centrality the number of charged particles is a little lower
than in the data. This fair agreement with the data hints
to the fact that the main particle production can be de-
scribed by the initial binary nucleon-nucleon interactions
treated by PYTHIA. The hydrodynamic evolution does
not affect the particle production. Since ideal hydrody-
namics implies an isentropic expansion this means that
the charged particle multiplicity is determined in the ini-
tial state and by the final resonance decays.

For the following calculations of spectra and collective
flow four different centrality classes have been chosen that
match the ones applied by the ALICE collaboration as
they are listed in the following table:
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FIG. 2: (Color online) Transverse momentum spectra of
charged particles for four different centralities calculated in
the UrQMD transport and the hybrid approach compared to
the available experimental data [2].

Centrality class Impact parameter range

0-5% b < 3 fm

5-10% b = 3− 5 fm

10-20% b = 5− 7 fm

20-40% b = 7− 10 fm

The transverse momentum spectrum for charged par-
ticles in the mentioned centrality classes are compared to
experimental data in the most central bin (see Fig. 2).
The main difference between the hybrid and the trans-
port calculation is in the slopes of the spectra. As ex-
pected the hydrodynamic evolution leads to a purely ex-
ponential pT dependence which describes the data until
pT < 3 GeV very well. At higher transverse momenta
the power law tail from hard processes becomes impor-
tant for a good agreement with the measured values. In
the range from 4 to 6 GeV the non-equilibrium descrip-
tion exemplified by the UrQMD calculation provides a
better description of the experimental data.

In Fig. 3 predictions for the transverse mass spec-
tra at midrapidity of pions, kaons and protons are pre-
sented. The pion spectra are very similar to the charged
particle spectra since they represent the major fraction
of the newly produced particles in the collision. Kaons
are strange mesons and protons are chosen because they
have a higher mass and are baryonic degrees of freedom.
The general features of the transverse mass spectra are
similar to the ones observed at RHIC and imply a col-
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FIG. 3: (Color online) Transverse mass spectra of negative
pions (top), positive kaons (middle) and protons (bottom) for
four different centralities calculated in the hybrid approach
with two different equations of state.

lective radial velocity that drives all the particle species.
The two different equations of state lead to very similar
results with the deconfinement transition having a little
steeper slope due to the more rapid expansion due to the
higher pressure in the quark gluon plasma phase.

After proving a rather successful agreement with basic
quantities like the multiplicity and transverse momen-
tum spectrum the next step is to look at anisotropic
flow observables. The elliptic flow has been calculated
with respect to the reaction plane by averaging over all
charged particles in all events to be compared to the
ALICE measurement that relies on the four-particle cu-
mulant method in two centrality bins. Fig. 4 shows a
good agreement between the hybrid calculations and the
data, especially between pT=0.8-2.5 GeV. In the very
low transverse momentum region the hybrid approach
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FIG. 4: (Color online) Elliptic flow of charged particles as a
function of transverse momentum for four different centralities
calculated in the hybrid approach with two different equations
of state compared to the experimental data[3].

underpredicts the data which has been observed in other
calculations as well [14]. At higher pT again the influence
of hard processes needs to be taken into account.
To quantify the shape of the initial conditions em-

ployed for the hydrodynamic calculation and its event-
by-event fluctuations Fig. 5 shows the probability distri-
bution of the coordinate space asymmetry characterized
by the eccentricity and the triangularity as defined in
[25]. The initial ϵn coefficients have been calculated in
each event and the normalized probability distribution is
plotted for two different centrality bins.
For central collisions the mean value and the shape of

the distributions are very similar for the participant ec-
centricity and the triangularity since both of them are
mainly generated by fluctuations. For more peripheral
collisions the eccentricity is influenced by a large geome-
try component due to the ellipsoidal shape of the initial
state in the transverse plane. Therefore, the mean ec-
centricity is larger and the fluctuations increase leading
to a wider distribution, whereas the triangularity stays
smaller and the distribution has a smaller width.
Since the triangularity has been introduced because of

its sensitivity to initial state fluctuations the higher mul-
tiplicity at LHC energies triggers the expectations that
the fluctuations become smaller compared to RHIC en-
ergies. In Fig. 5 the triangles and diamonds depict the
eccentricity and triangularity calculation from UrQMD
initial conditions for Au+Au collisions at Ecm = 200A
GeV. Surprisingly, the ϵn distributions match almost ex-
actly the ones at LHC energies for the two similar cen-

H. Petersen, Phys.Rev. C84 (2011) 034912  

chiral vs HG-EoS 



How can we obtain 
information from the 

different stages of the 
reaction? 

Marcus Bleicher, STARS 2015 
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• Energy-, momentum- and baryon number densities are 
mapped onto the hydro grid using for each particle

 

• Changing " leads to different granularities, but also 
changes in the overall profile

• How does changing the starting time affect the picture?

Initial State at RHIC
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Angular 
correlation 
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Sources of Fluctuations 

•  Granularity is driven by 
•   position of nucleons 
•   distribution of collisions 
•   type of interaction 
•   degree of thermalization 

•  How to quantify the fluctuating shape of the initial state? 
 ! Fourier-expansion in position space 

UrQMD @ 
200 AGeV 

+ + + + 
⋯ 

= ε2 ε5 ε4 ε3 
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Anisotropic Flow –  
Higher Order Fourier Coefficients 

Simplified picture: 

Position-space anisotropy  
! Momentum-space anisotropy 

 

Use these coefficients to learn about the initial state 

Real picture: 
Complicated state, 
mean free paths,… 

by MADAI.us 



Constraining Granularity 
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Hannah Petersen NeD/TURIC, 06/27/2012

Constraining Granularity

• Triangular flow is very sensitive to 
amount of initial state fluctuations

• It is important to have final state particle 
distributions to apply same analysis as in 
experiment

• Single-event initial condition provides 
best agreement with PHENIX data

• Does that imply that the initial state is 
well-described by binary nucleon 
interactions +PYTHIA? 

• Lower bound for fluctuations!
18

H.P. et al, J.Phys.G G39 (2012) 055102

From H. Petersen 
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Use Photons to Learn More 
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Photons:  
Partonic channels vs hadronic channels 

!  from QGP: sensitivity to parton density and temperature 
!  from initial state: sensitivity to PDFs  (gluon!) 
!  Compare to hadronic channels, i.e. π+ρ!γ+π, …	



 
Cross section Refs 
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Temperature and dof: Photons 

"  Clear separation 
hadronic vs. partonic 

"  partonic calc. fit data 
"  Reasons for missing 

contributions in 
UrQMD/Hadron gas: 
- late equilibration,  
- hadronic rates, 
- shorter life time 

Data points from: 
PHENIX, PRC 81 (2010) 034911 
fig: Bäuchle, MB, PRC 82 (2010) 064901 
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FIG. 47: (Color online) Theoretical calculations of thermal
photon emission [88, 90, 91, 92, 93, 94] are compared with the
direct photon data in central 0-20% Au + Au collisions shown
separately and added to pQCD calculations. In contrast to
the others, the curve by [94] includes pQCD contributions.
The black solid curve show the pQCD calculation, scaled by
TAA. The QCD scale µ is set to pT for this calculation. The
two black dashed curves around the black solid curve show the
scale uncertainty, with the upper curve and the lower curve
corresponds to µ = 1/2 · pT and µ = 2 · pT , respectively.

 (fm/c)0τ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

 (M
eV

)
in

it
T

0

100

200

300

400

500

600

700

800
D. d’Enterria & D. Peressounko
S. Rasanen et al.
D.K. Srivastava et al.
S. Turbide et al.
F. Liu et al.
J. Alam et al.
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APPENDIX A: BACKGROUND
NORMALIZATION

1. Pairing of Electrons and Positrons

In the following we assume that, as dictated by the
charge conservation law, e− and e+ are always produced
in pairs and that most of these pairs are produced statis-
tically independent of each other. Let us say N pairs are
produced in a particular event and N is given by a prob-
ability distribution P (N). Of the N pairs only a fraction
εp is fully reconstructed, and then the number of recon-
structed pairs np is given by a binomial distribution B
sampling out of N “events” with a probability εp.

• Probability to get np pairs from N true pairs:
ω(np) = B(np, N, εp)

• with an average: ⟨np⟩ = εpN

• and variance: σ2
p = εpN(1 − εp)

Of the remaining pairs one track is reconstructed with
a probability ε+ or ε−. For a given N and np the num-
ber of additional single positive tracks n+ and negative
tracks n− follow a multinomial distribution M with three
possible outcomes for each of the N−np unreconstructed
pairs: no track, one + track or one − track.

The probability to get n+ and n− single tracks from N
true pairs with np reconstructed pairs, i.e., from (N−np)
not fully reconstructed pairs is:

ω(n+, n−) = M(n+, n−; N − np, ε+, ε−)

ω(n+) =

N−np
∑

n−=1

M(n+, n−; N − np, ε+, ε−)

ω(n−) =

N−np
∑

n+=1

M(n+, n−; N − np, ε+, ε−) (A1)

• with average: ⟨n±⟩ = ε±(N − np)

• variance: σ2
± = ε±(N − np)(1 − ε±)
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Temperature and dof: Photons 

"  Clear separation 
hadronic vs. partonic 

"  partonic calc. fit data 
"  Reasons for missing 

contributions in 
UrQMD/Hadron gas: 
- late equilibration,  
- hadronic rates, 
- shorter life time 

Data points from: 
PHENIX, PRC 81 (2010) 034911 
fig: Bäuchle, MB, PRC 82 (2010) 064901 
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FIG. 47: (Color online) Theoretical calculations of thermal
photon emission [88, 90, 91, 92, 93, 94] are compared with the
direct photon data in central 0-20% Au + Au collisions shown
separately and added to pQCD calculations. In contrast to
the others, the curve by [94] includes pQCD contributions.
The black solid curve show the pQCD calculation, scaled by
TAA. The QCD scale µ is set to pT for this calculation. The
two black dashed curves around the black solid curve show the
scale uncertainty, with the upper curve and the lower curve
corresponds to µ = 1/2 · pT and µ = 2 · pT , respectively.
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FIG. 48: (Color online) Tinit vs. τ0 for various theoretical
calculations shown in Fig. 47.
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In the following we assume that, as dictated by the
charge conservation law, e− and e+ are always produced
in pairs and that most of these pairs are produced statis-
tically independent of each other. Let us say N pairs are
produced in a particular event and N is given by a prob-
ability distribution P (N). Of the N pairs only a fraction
εp is fully reconstructed, and then the number of recon-
structed pairs np is given by a binomial distribution B
sampling out of N “events” with a probability εp.

• Probability to get np pairs from N true pairs:
ω(np) = B(np, N, εp)

• with an average: ⟨np⟩ = εpN

• and variance: σ2
p = εpN(1 − εp)

Of the remaining pairs one track is reconstructed with
a probability ε+ or ε−. For a given N and np the num-
ber of additional single positive tracks n+ and negative
tracks n− follow a multinomial distribution M with three
possible outcomes for each of the N−np unreconstructed
pairs: no track, one + track or one − track.

The probability to get n+ and n− single tracks from N
true pairs with np reconstructed pairs, i.e., from (N−np)
not fully reconstructed pairs is:
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Is there QGP? 

Bjoern Bauechle, MB, PRC (2010) 

Hybrid, QGP: Channels Comparisons 



Use HBT Correlations 
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Hanbury-Brown-Twiss Correlations 
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HBT correlations: Idea 

Bose-Einstein-statistics leads to short range  
correlations of bosons in momentum 
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    emission source (Imaging, Gauss-Source) 

In heavy ion collisions: Pions, Kaons, … 
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(R. Hanbury-Brown, R.Q. Twiss, 1956) 
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qout 

qside 

qlong 

Meaning of Components 
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•  Two particle interferometry: Image and emission duration 

Rside 

Rout 

Pratt-Bertsch (“out-side-long”) 
coordinanates allow to obtain 
space and time information 

Rout/Rside-ratio measures 
emission time of the system 
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Au+Au Au+Au 

Prediction 
•  Mixed phase should lead to drastic increase 

in life time, visible in R_o/R_s ratio 

From: Rischke, Gyulassy, 
Nucl.Phys.A608:479-512,1996  

• 10 times increased life 
time 

•  Factor 2-4 increased 
 Rout/Rside ratio 

~ beam energy  



Marcus Bleicher, STARS 2015 

HBT radii ! Lifetime 
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Hydro evolution leads to larger radii, esp. with phase transition 
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RO/RS Ratio 

•  Hydro phase leads to 
smaller ratios  

•  Hydro to transport 
transition does not 
matter, if final 
rescattering is taken 
into account 

•  EoS dependence is 
visible, but not as 
strong as previuosly 
predicted (factor of 5) 

(Q. Li et al., PLB 674, 111, 2009) 

Data from NA49 



Summary 

•  Hybrid approaches 
have become the 
„Standard Model“ for 
Heavy Ion collisions 

•  Agular correlations 
constrain initial state 

•  Photon yields support 
the existence of QGP  

•  HBT correlations may 
indicate increased life 
times  
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